e-ISSN : 0975-4024 p-ISSN : 2319-8613   
CODEN : IJETIY    

International Journal of Engineering and Technology

Home
IJET Topics
Call for Papers 2025
Author Guidelines
Special Issue
Current Issue
Articles in Press
Archives
Editorial Board
Reviewer List
Publication Ethics and Malpractice statement
Authors Publication Ethics
Policy of screening for plagiarism
Open Access Statement
Terms and Conditions
Contact Us

ABSTRACT

ISSN: 0975-4024

Title : Adaptive fuzzy sliding mode control for gantry crane as varying rope length
Authors : TRINH LUONG MIEN
Keywords : gantry crane, adaptive controller, adaptive fuzzy controller, sliding mode control, varying rope length
Issue Date : Aug-Sep 2016
Abstract :
Gantry crane is used quite commonly in hazardous areas, which increasingly requires strict conrol of the gantry crane operation process to improve efficiency and ensure safe gantry crane opeartion. Automated the gantry crane operating process is being applied pupular currently. Gantry crane is often affected by large noise, having the varying- model parameters, so that proposed a apdaptive fuzzy combining sliding mode controller for the gantry crane in this article. This control method derived from combining the sliding surfaces of three subsystem of the gantry crane (trolley position, rope length, anti-swing) to draw out two system sliding surfaces: the trolley positon with the anti-swing and the rope length and the anti-swing. On the based of the sliding mode control principle,drawn out the equivalent controller and the switching controller for gantry crane. But due to the uncertain parameters - nonlinear model of gantry crane with the bound disturbances, combining the fuzzy approximate method, defined the fuzzy controller (used to minic the equivalent controller) and the compensation controller for the difference between the equivalent controller and the fuzzy controller (used as the switching controller) for two system control inputs: trolley position and rope length The adaptive control laws for these controllers were deduced from Lyapunov’s stable criteria to asymptotically stabilize the sliding surfaces. Simulation results demonstrated the feasibility of the suggested method through grantry crane in the hazard areas.
Page(s) : 1784-1791
ISSN : 0975-4024 (Online) 2319-8613 (Print)
Source : Vol. 8, No.4
PDF : Download
DOI : 10.21817/ijet/2016/v8i4/160804224