Assessing Industrial Nuclear Reactor Risk using Incident Reporting Risk Matrix Method

Mehrzad Zandieh^{a,*}

a Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran Corresponding author: *Mehrzad.zandieh@yahoo.com

Abstract - This novel study assessed industrial nuclear reactor risk using incident reporting risk matrix. It has also investigated the dangers, causes leading to dangers and their effects and it has identified the occurrence possibilities and intensity of consequences. Moreover, risk levels have been obtained. It was found that 17%, 61%, and 22% of the risks were unlikely, weak, and possible, respectively. The same are 26%, 39% and 35% of the hazards with moderate, major and severe consequences, respectively. Also, according to the risk matrix, 4%, 26% and 70% of the risks have low, medium and high levels of risk, respectively. Those risks having the risk level of high, were in need of control and preventive actions. Due to this reason, control and preventive actions suitable with consequences and risk effects were proposed and presented. These control and preventive actions were generally placed in the design phase including thermal design, hydraulic design as well as process control.

Keywords: Risk assessment, Nuclear reactor, Incident reporting risk matrix

1. Introduction

Human societies' need toward reliable energy resources for sustainable development and increasing global sensitivity regarding the reduction of environmental pollutions specially radioactive materials have lead the research be accelerated in the field of nuclear studies [1]. Nuclear reactor refers to equipment in which nuclear chain fission reaction is done continuously and through being under control. In a nuclear reactor, neutrons are used for heavy nuclear fissions. Heavy nuclear fission leads to the production of lighter nuclear, thermal energy and various neutrons. Nuclear reactor not only includes purified nuclear fuel networks, but also includes fuel cooling system during chain reaction simultaneous with energy production such that constituent materials of heart not be damaged structurally [2]. The heart of a nuclear reactor includes some integrated fuels, each of which is consisted of some holder fuel bars and liquid cooling networks [3]. The most important application of nuclear fission reactors is in huge nuclear power plants. The output of nuclear reactor is water vapor with a high pressure and temperature. This vapor produces electricity through rolling turbine and finally generator. Security aspects are of utmost importance, since we should care about the dangers of radioactive materials [2]. Risk is an inevitable factor in projects that if ignored or not managed properly, it would be impossible to control the circumstance [4]. Risk assessing is a versatile method for managing effective equipment in security processing units to reduce the risk resulting from various events. Nowadays, using risk assessing methods have a growing speed and various methods are used for identifying the dangers and risk assessing [5]. Risk assessing is a logical method for investigating the dangers focusing on identifying the dangers and their potential consequences on the individuals, materials, equipment and environment. In fact, by doing so, valuable data for decision making is obtained which mainly includes reducing danger risks (through control and preventive actions), planning for emergency conditions, acceptable risk levels, inspection and keeping policies in industrial installations [6]. In this research, assessing industrial nuclear reactor risk has been investigated for the first time using incident reporting risk matrix method.

2. Methodology

To assess the risks, incident reporting risk matrix method has been utilized.

Remembrance 1: Risk assessing should be conducted by two perspectives of the possibility of risk occurrence in the future according to the guidance Table 1 as well as its consequences on the purposes as stated in the guidance Table 2.

Possibility percentage	Occurrence possibility
Less than 1%	Rare
1%-20%	Unlikely
21%-50%	Possible
51%-90%	Likely
More than 90%	Almost certain

Guidance Table 1: The possibility of risk occurrence in the future

Guidance Table 2	Risk	occurrence consequence	in	the	future
------------------	------	------------------------	----	-----	--------

Explaining the consequence of risk occurrence	The intensity of the consequence				
It has an insignificant effect on the purpose of nuclear reactor*.	Insignificant				
It has a minor effect on the purpose of nuclear reactor.	Minor				
It has a moderate effect on the purpose of nuclear reactor.	Moderate				
It has a major effect on the purpose of nuclear reactor.	Major				
It has a severe effect on the purpose of nuclear reactor.	Severe				
*In industrial measurements, the purpose of nuclear reactor is producing energy (electricity energy).					

	Consequence Intensity					
	Status	insignificant	minor	moderate	major	Severe
Li	Almost certain	Medium	High	High	Severe	Severe
kelil	Likely	Medium	Medium	High	Severe	Severe
hood	Possible	Low	Medium	Medium	High	Severe
	Unlikely	Low	Low	Medium	High	High
	Rare	Low	Low	Low	Medium	High

Guidance Table 3: Risk prioritizing

Table 4.	Guidance	table	for	the	risks
1 auto 4.	Guiuanee	table	101	unc	112V2

Actions	Guidance for accepting the risk	Risk status
Immediate actions should be taken to eliminate the risk source.	Not acceptable	Severe
If possible, actions should be taken in near future to control the risk.	Generally not acceptable	High
If possible, action should be taken in far future to control the risk.	Generally acceptable	Medium
Informing related individuals about the existing risk and applying more observance	Acceptable	Low

3. Results and discussions

The table of identifying and assessing as well as controlling risks have been specified and presented below.

Table 5: Risk assessing table using incident reporting risk matrix method

	Identifying, assessing and controlling the risk						
Row	Reasons	Risk Event	The consequence on the purpose of nuclear reactor	The level of occurrence possibility	The intensity of the consequ ence	Risk status	Suggestive actions) control and preventive actions)
1	Creating deficiency or disorder in the cooling system	Incorrect energy balance among energy production and cooling rate	Constituting materials of the heart of the reactor are damaged in terms of structure and geometry.	Unlikely	Major	High	Designing and using cooling intelligent control system
2	Sudden turn off of the nuclear reactor	Increase of reactor's heart temperature due to the continuance of decomposition heat of fission radioactive products	Melting and deteriorating fuel elements	Unlikely	Major	High	Design and application of materials in fuel elements that are highly resistant to severe temperature shocks
3	Inappropria te design of the reactor	Unbalance of losing neutron rate due to absorbing and leakage with the production rate of neutron	Not having sustainable chain reaction and as a result, not having a constant energy production rate	Unlikely	Major	High	Engineered and exact designing of the reactor
4	Melting and collapse of nuclear reactor`s heart	Induction of high positive reactivity	Releasing high energy (small nuclear explosion)	Rare	Severe	High	Exact and engineered thermal designing of the reactor
5	Complete exit of control bar with the highest radioactive value	Significant deviation in the spatial independent of time figure	Invalidity of synthetic-point model	Rare	Medium	Low	_
6	Retarding neutrons of fission	Low error in the intensity absorption regarding nuclear such as U ²³⁸ and Th ²³²	High error in estimating fuel consumption and changing the fruitful materials of U ²³⁸ and Th ²³² to fission Pu ²³⁹ and U ²³³	Possible	Major	High	Exact and correct designing of the kind and measure of neutron retarding in the reactor

7	Error of thermal designing in the heart of reactor	Increasing heart temperature of the reactor, more than melting temperature of heart components	Melting reactors' heart components (specially fuel and sheath)	Unlikely	Major	High	Exact and engineered thermal designing in the heart of the reactor
8	Having fault in designing consecutive processes of thermal energy transferring resulting from nuclear fission	Rapid temperature increase in the sheath	Boiling of cooling liquid	Unlikely	Moderat e	Mediu m	_
9	Error in hydraulic design in the heart of the reactor	Increase of loss of cooling pressure while crossing over the heart of the reactor	Increase of hydraulic pressure on the heart of the reactor components and as a result, increasing pumping costs	Unlikely	Moderat e	Mediu m	_
10	Fuel's long resistance in the heart of the reactor	Failure of fuel elements	Increase of the possibility of radiation dangers	Unlikely	Severe	High	Exact designing of the fuel retention time in the heart of the reactor
11	Weak conduction of nuclear fuel (Oxide or Uranium Carbide)	High temperature changes in nuclear fuel elements	High thermal tensions to fuel elements	Rare	Major	Mediu m	_
12	-Breakage of fuel sheath -Breakage in the cooling system of heart (pipe) Damaging the case of heart of the reactor	Release of radioactive materials	Highly negative physical and environmental effects	Unlikely	Severe	High	Rapid control systems for tuning off the reactor in accident conditions
13	Differential expansion	Bucking fuel bar	Having instability in some of the designs of the heart of the	Unlikely	Moderat e	Mediu m	_

			reactor				
14	Fuel ray	Creating inflation in the fuel	Creating pressure on the sheath	Possible	Moderat e	Mediu m	
15	Gas productions of fission	Having pressure on the sheath	Form change of fuel bar in high temperature (Jumping to high temperature)	Possible	Moderat e	Mediu m	_
16	Temperatur e changes	Huge thermal slopes in the symmetry line of fuel needle to the sheath	Breakage of the sheath in the radiation environment of the heart of the reactor	Possible	Major	High	Designing and constructing sheath from materials having high resistance against thermal changes
17	Reactor`s turning on and off	Temperature changes occurring while turning on and off the reactor	Breakage of the sheath in the radiation environment of the heart of the reactor	Possible	Major	High	Designing and constructing sheath from materials having high resistance against thermal changes
18	If the AC electricity of the cooling system of the reactor and supporting diesel generators not work and reactors be put against severe dangers of extreme heat without having cooling system	A hot nuclear of a reactor, without having a permanent resource of cooling materials, continuously vapors the water around fuel bars to the extent that fuel bars are placed above water level. In case fuel bars are places above the cooling materials, they may be melted and the hot radioactive fuel may remain in the store having reactor.	In the worst state of melting, the mixture of melted fuel is melted by metal case, disposing alternative amounts of radioactive radiations against out world through crossing over later obstacle that are designed for keeping nuclear materials.	Unlikely	Severe	High	Pumping the water having various mineral component to the inside of the nuclear of the reactor along with the injection of Boric acid as the absorbent of neutron to the inside of the reactor
19	Zirconium reaction of fuel bars with the cooling water in a high	Gathering of produced hydrogen resulting from the reaction	Destruction of outer walls of the reactor due to the exploitation	Unlikely	Severe	High	Designing intelligent thermal control system for the reactor

	temperature						
20	Reducing the cooling water level	Placement of fuel bars outside of the water level	Severe damage to fuel bars	Unlikely	Major	High	Using intelligent controllers for controlling the cooling water level
21	Impairment of the cooling system along with operator's faults	Melting of Reactor core	Exiting some of the dangerous radioactive radiations from the reactor	Unlikely	Severe	High	Using assisting cooling system that the time a fault happens in the main cooling system, it intelligently and automaticall y, it circulates the cooling fluid, and prevents nuclear reactor's melting.
22	Impairment of the cooling pumps of the reactor	 Reactor's nuclear melting High temperat ure of the center of the reactor Destructi on of fuel bars of the reactor 	Distributing radioactive materials	Unlikely	Severe	High	Using assisting and supporting pumps that are automaticall y entered to the orbit the time main pumps are not working, so they circulate the cooling liquid.
23	Meltdown of the central part of the reactor	Melting atomic fuel cylinders and other parts of the reactor	High leakage of radioactive materials to the surrounding environment and high pollution	Rare	Severe	High	Exact thermal designing of the reactor

Table 6: Possibility percentage share of various risks

Row	Possibility occurrence level (%)	Kind
1	17	Rare
2	61	Unlikely
3	22	Possible

Table 7: Intensity of consequences' percentage share regarding various risks

Row	Intensity of the consequence	kind
1	26	Moderate
2	39	Major
3	35	Severe

Table 8: Levels' percentage share of various risks

Row	Risk level (%)	Kind
1	4	Low
2	26	Medium
3	70	High

Figure 1: Occurrence possibility level for various risks (%)

Figure 3: Risk level for various risks (%)

According to Table 5, based on incident reporting risk matrix method, 23 important dangers with dangerous factors and consequences as well as related effects were identified.

It was revealed that 17%, 61% and 22% of dangers had the occurrence possibility of rare, unlikely and possible, respectively (Table 6, Figure 1); this means that most of the risks had the occurrence possibility of unlikely and possible (83%). Accordingly, 26%, 39% and 35% of dangers had the consequence intensity of moderate, major and severe (Table 7, Figure 2); this means that most of the risks had the consequence intensity of major and severe (74%), which is due to the nature of the reactor (nuclear reactor) and its related consequences. Considering risk matrixes, 4%, 26% and 70% of the dangers had a risk levels equivalent to low, medium and high (Table 8, Figure 3). 8 risks had the occurrence possibility, consequence intensity and risk level equal to unlikely/rare (6 of them were unlikely and 2 of them were rare), severe and high. These were more severe than others. These types of risks were related to the risks and consequences of these effects, including radioactive radiation and the emission of hazardous radiation to the environment and the highly hazardous (human and environmental) damage caused by them and the same explosion in the reactor due to damage to the internal wall caused by the explosion of the nuclear reactor. 16 group of risks needed control and preventive actions. Risks having risk levels of high, needed control and preventive actions. Therefore, control and preventive actions suitable with consequences and risk effects were suggested and presented (Table 5). These control and preventive actions generally included designing and using appropriate material in fuel elements, using appropriate neutron controllers, accurate thermal designing according to heat transfer principles, exact designing of the fuel retention time and appropriate design of the fuel sheath (in terms of material, structure and geometrical form). Moreover, control actions' discussion includes reactor control systems in accident conditions, controlling reactor temperature, controlling cooling water's level as well as appropriate and intelligent designing in the cooling system of the reactor.

4. Discussion

This study was conducted with the aim of analyzing industrial nuclear reactor's risk. It was revealed that control and preventive actions are of utmost importance in the designing phase. The first and dangerous responsibility of nuclear reactor's design of the heart is taken by nuclear engineer. Various aspects of designing such as thermal-hydraulic design, structural and geometrical design are important. It includes designing indexes, applicable discussions, reliability, security and etc. As it was indicated in the risk assessing table, in case errors take place in nuclear reactor's design and process, various dangers and consequences resulting from that as well as irreparable effects would happen in nuclear reactor process. Risk assessing is a powerful and capable instrument for avoiding and preventing such dangers and their consequences.

References

- T Hamacher and A M Bradshaw, "Fusion as a Future Power source: Recent achievements and Prospects", 18 th World Energy Congress Energy Markets: The Challenges of the New Millennium, Buenos Aires, Argentina 21, 2001.
- [2] Mohammad Reza Iskandari, Rashid Shah Hosseini, Fatemeh Alikaii, Nuclear Reactor Analysis, Nuclear Science and Technology Research Institute Publications, 2011.
- [3] M.M. EL-Wakil, Nuclear Heat Transport, 3rd Edition, The American Nuclear Society, USA ,(1981).
- [4] Habibi, E.A. Applied safety and performance Indicators in the industry. Second edition, Fanavaran Publishing House, 358 pages, 2007.
- [5] Hyatt N. Guidelines for process hazards analysis, hazards identification & Risk analysis. CRS press; P1-12, 2003.
- [6] Nivo Lianito, Z., Risk Analysis and Risk Management: A European in sight Law, Probability and Risk, 1(2): 161-174, 2002