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Abstract - Electricity network management is a complicated issue that needs a forecast of consumption. 
This predication is generally hard and a challenging topic due to nonlinearity and permanent fluctuation 
of load in the network. Although linearities of time-series load may give an estimation, linearization of 
nonlinear data to foresee removes the nature of information which shows anomalies in electricity demand. 
New approaches of (ANN) help to make a forecast model with keeping information properties. In this 
paper, we categorized max daily load data in IRAN based on climate zone to figure the following 2 
months. Long Short-Term Memory (LSTM) from deep learning approach picks and yields contrasted 
with different steps of epochs. The outcomes appear epochs do not necessarily improve the accuracy of 
prediction and best MADP for cold, tropical and temperament zone, are 1.26%, 2.5%, and 10.49%, 
respectively. 
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1. Introduction 

Power utilization in developing countries has become quickly in recent decades. As the nature and size of the 
economy of these nations develop quickly, their requests increment extensively and the vitality the board system 
is getting progressively significant. To manufacture an effective system, it is unavoidable to figure vitality 
requests as per different circumstances. Estimation of consumption in a focused power showcase is fundamental 
for the market in arranging their tasks and dealing with their ability and upkeep, just as making monetary 
enhancement in the power business. In this way, estimating the development of intensity request assumes a 
significant job in the manageability of market interest. Even though, finding a fine estimation model that is exact 
and precise for power load anticipating is one of the most challenging. It is a direct result of the highly unstable, 
non-stationary and non-linear trend of electricity demand and other ecological variables. The long term 
prediction is not feasible because of unpredictable increment and vulnerability in the utilization of intensity with 
the developing populace and reliance on electric power. Making a strong forecasting model for developing 
countries given by unmodified data is a challenging issue. Seasonal ARIMA solution is more than once utilized 
in power utilization investigation and is a high-accuracy approach for regular information forecast. (Wang et al., 
2012) On the other hand, since the behavior of the demand for electricity is with uncertainty and nonlinearity, 
neural networks can be fit for exploring the behavior of consumption for prediction purposes.(Kumar et al., 
2018) . Cutting-edge approaches in data analysis permit increasing better estimate models. With the emerge of 
neural networks, With the development of neural systems, analysts went for surveying its precision of 
expectation versus linear models, like ARIMA. 

In this paper, we compare LSTM as one of the most current strategies for the expectation for time-series in 3 
distinctive climate classifications of electricity consumption in Iran. Since power consumption in Iran is more 
related to the number endorsers and temperature than some other variable, forecasting power consumption by 
climatic regions can report noteworthy outcomes. (Ardalani and Ghanbari, 2012; Ardalani et al., 2012). Iran's 
atmosphere can be isolated into three (cool, warm and moderate) zones. The model learns from historical data 
patterns. Data is built and optimized on a single historic dataset from TAVANIR. The forecast results are 
contrasted with real consumption values to measure the performance of the methods. Then the result compares 
with the ARIMA solution which is trained and calculated in the same data, program, and hardware. The 
following segment of this paper dispenses on related work. At that point, the philosophy of LSTM (in 
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examination with RNN) will clarify. From that point onward, our experimental work and spotlight on our 
outcomes will be displayed, and the last part goes to the conclusion. 

2. Related Work 

Here is some related research to LSTM for power demand estimating.  

(J.-Y. Kim and Cho, 2019) proposed a technique dependent on deep learning that comprises of a projector for 
characterizing a proper state for a given circumstance and an indicator that conjectures vitality request from the 
characterized state. Results gave better execution (MSE = 0.384) than the ordinary models. (Zheng et al., 2019) 
declared provided that the prediction of household-level electricity demand, first was built at the appliance-level 
and afterward aggregated to get the residential-level, forecast performance could be significantly improved by 
LSTM. (Kandananond, 2019) found ARX (Autoregressive with Exogenous Output) outperformed ARIMA in 
the accuracy of electricity demand prediction. (Weinberg, 2019) utilized Multi Seasonal ARIMA models for 
long and short-range estimates of load requests and arrived at 15.1% and 21.6% MAPE volatile and nonvolatile 
settings, respectively. (Yu et al., 2019) offered a crossover of ARIMA and ANN could give a better expectation 
for load requests in time categories of consumption. (Aradhye et al., 2019) found a hybrid model of ARIMA and 
SVM outperformed ARIMA, SVM, and ANN individually in terms of MSE and MAE for load prediction. (Bedi 
and Toshniwal, 2019) presented a deep learning-based framework for forecasting electricity consumption, and 
contrasted the outcomes and ANN, RNN and SVR models. (Badal and Franzén, 2019) expected to analyze 
LSTM and SVM. Results shew that the SVM-model had marginally higher precision and a lower standard error 
of the mean. The conclusion made was that in this specific case, SVM outperformed RNN in prediction 
accuracy, however, there is an opportunity to get better of the two executions of these strategies. Regarding 
specificity and sensitivity, the choice of an SVM or RNN would be highly dependent on the implementation of 
real-world applications. (Muzaffar and Afshari, 2019) compared LSTM prediction accuracy over the horizons of 
1, 2, 7 and 30 days with traditional methods by picking up an electrical load data with exogenous variables 
including temperature, humidity, and wind speed. Results shew, the trained LSTM network is better than other 
methods and has the potential to further improve the accuracies of forecasts. (Bano et al., 2019) anticipated cost 
and load of New York city by MLP, SVM and LR. The feature selection was done by CART and RFE. (Khan et 
al., 2019) represented the lowest mean absolute percentage error with a DCNN model to forecast the electricity 
demand in comparison with RNN and CNN models. (Mujeeb et al., 2019) with the help of big data of load and 
price of smart grid, proposed DLSTM for prediction which outperformed ANN, NARX and ELM in terms of 
MAE and NRMSE. (Wu et al., 2019) used GRU for electricity cost in short time prediction. Based on their 
results, This solution could make the precision for a forecast of short-time demand, better and gives preferable 
execution over traditional approaches. (Bissing et al., 2019) found a hybrid model of ARIMA and Holt-Winters 
gave a better prediction for hourly day-ahead price. (Guo et al., 2019) used ARIMA for the prediction of 
predictive energy management of HEVs. They believed with the ARIMA; consumption is reduced by around 
5%-7% compared with when no predictor used. (Balaji et al., 2019) and (Tokgöz and Ünal, 2018) and (Kumar 
et al., 2018) generated half/two-hour-ahead electric demand forecast models with CCN, GRU, ELM and LSMT 
and results were acceptable. (Chang et al., 2018) believed that AdaGrad and RMSProp, made LSTM perform 
better based on their results. (Agrawal et al., 2018) used LSTM-RNN for their prediction which gave 2.25% in 
confidence interval and 6.54 for MAPE. (Jiang and Hu, 2018) used LSTM to forecast the day-ahead electricity 
price. In addition to historical prices, they considered holidays, an hour of the day, day of the week, climate 
change, oil as the price of substitutions, the trend of consumption, etc. The result said that the LSTM network 
outperformed four forecasting methods in the paper. (Rahman et al., 2018) found the accuracy of forecasting in 
RNN is not better than MLP for making weekly predictions in commercial and residential buildings in the U.S. 
(Bouktif et al., 2018) used LSTM with multiple configurations to compare predict models for short to medium 
term aggregate load forecasting with France electricity consumption data. Results shew, LSTM gave high 
accuracy. (N. Kim et al., 2018) got prediction accuracy of around 82.5% with LSTM for month-ahead electricity 
consumption prediction. (T.-Y. Kim and Cho, 2018) claimed CNN-LSTM hybrid networks, LSTM and DNN 
could separate unpredictable features of electric power utilization. The CNN-LSTM could appraise control 
utilization, and CNN-LSTM RMSE works better than traditional forecast models for the individual residential 
demand. (Peng et al., 2018) used DELSTM for an electricity price forecast. The conclusion of the paper shows 
that the offered model works better than the current predictive models. (Bedi and Toshniwal, 2018) presented an 
EMD-based deep learning which gets the EMD with LSTM, together. Then for assessing the performance of the 
given model, they compared results with RNN, LSTM, and EMD-based RNN models. (Kuo and Huang, 2018) 
found a combined model of 2 deep neural networks, (CNN & LSTM) gave better performance in load prediction 
than each of them, individually. (Choi and Lee, 2018) developed LSTM for four real-life time series with the 
aim of electric load forecasting which resulted in acceptably. (Shi et al., 2017) found the power of prediction in 
household load demand ARIMA, SVR, and deep RNN is 19.55%, 13.1%, 6.5% respectively. (Amarasinghe et 
al., 2017) presented a load prediction based on deep learning. According to their reports, the CNN outperformed 
SVR. (Marino et al., 2016) presented two LSTM (standard and Sequence to Sequence) for electricity 
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consumption forecast and while the first model works well in one-hour data, it failed at one-minute time-series, 
S2S performed well on both datasets. (Amini et al., 2016) in their research improved the precision of ARIMA 
by improving the incorporated and auto-backward request parameters. (Voronin and Partanen, 2014) integrated 
NN, ARIMA and wavelet transforms for price and demand prediction. The results of the paper represented that 
the proposed model gave an improvement in both request and value forecast precision in comparison with and 
models utilizing a different systems approach. (Wang et al., 2012) tried to improve the precision of seasonal 
ARIMA for load consumption. The results indicated that the accuracy of prediction in the three residual 
modification models outperformed than the single seasonal ARIMA. The integration of models gives the best 
result. (Shafie-Khah et al., 2011) found a hybrid model of ARIMA (linear patter) and RBFN (nonlinear patter) 
could provide a considerable improvement for the forecasting accuracy. They also used Particle Swarm 
Optimization to optimize the network structure. PSO makes the RBFN be adapted to the specified training set, 
reducing computation complexity and avoiding overfitting. (Kandananond, 2011) compared the power of 
prediction of ARIMA and ANN and MLR in load demand. The reports said that MAPE of ANN was 0.996% 
and MAPE of MLR and ARIMA  3.2 and 2.8. (Che and Wang, 2010) with the help of SVRARIMA (a 
combination of SVR and ARIMA) demonstrated that the model outperformed the NN model, the traditional 
ARIMA and other hybrid models with the index of RMSR and MAPE.  

3. Methodology 

1.1. Long Short-Term Memory 

It is a kind of deep learning approach with memory and equipped for adapting long haul conditions and 
consecutive information. A Cell as memory part and "controllers" (made from input, output and Foregate gate) 
are the regular engineering of this system. LSTM is intended for applications where the info is an arranged 
succession. It is especially similar to an RNN however with increasingly entangled innards. 

The incredible thing about RNN is that it remembers everything. It has long-ago conditions that can catch the 
whole grouping, but at the same time, that is a drawback! In LSTM we let RNN specifically pick whatever 
individuals and what it slips its mind. It successfully chooses how a lot of the system is going to convey 
information from the past time-step and what amount should be utilized in the present time-step.  

Like every single neural network, the node plays out an estimation utilizing the sources of info and returns yield 
esteem. LSTM reuses the yield from a past advance as a contribution for the subsequent stage, while in RNN, 
the yield is utilized alongside the following component as the contributions for the following stage. An ordinary 
internal neuron of RNN and LSTM are as underneath:  

 
Diagram 1: An inner neuron of an RNN (left) and LSTM (right) (Olah, 2015) 

Diagram.1 shows the RNN takes and joins the past shrouded state as input.1 with the present time-step vector 
(ܺ௧) as input.2. At that point goes the outcome through some non-linearity (݊ܽݐℎ) for squishing values between 
[-1 1] to direct the system. At that point, it delivers another shrouded state (ℎ௧) and goes to time-step (ܺ௧ାଵ). By 
rehashing the procedure, it might make a forecast model toward the finish of layers. (relies upon what we need). 
LSTM has more segments within. This is based on gates. Gates choose if the information is significant to keep 
or ought to be overlooked during preparing. Every one of the entryways has sigmoid (ߪ) enactment to comprise 
smooth bends in the range 0 to 1 and the model stays differentiable. Information more like 0, ought to be 
overlooked and close to 1, keeps refreshing cell state. Diagram.1 shows three images of sigma (ߪ) which are 
answerable for overlooking, information and yield door, individually. Sigmoid either let data through or 
prevents the data from experiencing and this choice relies upon the info that it's getting. From the start entryway, 
it chooses whether to recollect the past state dependent on an element of the past concealed state (ℎ௧ିଵ) and the 
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present vector input (ݔ௧). The condition is as beneath. LSTM compact conditions with compact first exhibited in 
1997. (Hochreiter and Schmidhuber, 1997) ௧݂ = ൫ߪ ௙ܹ[ℎ௧ିଵ; [௧ݔ + ௙ܾ൯ 
The other choice LSTM needs to make is the amount it will add to contribute to its representation from the 
current time step. The conditions for that are as beneath: ݅௧ = )ߪ ௜ܹ[ℎ௧ିଵ; [௧ݔ + ܾ௜) ܥሚ௧ = )ℎ݊ܽݐ ௖ܹ[ℎ௧ିଵ; [௧ݔ + ܾ௖) 
This is again a component of both the shrouded state (ℎ௧ିଵ) and current input (ݔ௧), in addition to bias (ܾ௜	௢௥	௖) 
and afterward, it goes through a non-linearity. There are two segments to this progression. The first one (݅௧) says 
what amount is it going to contribute and the subsequent one (ܥሚ௧) which is about what you will contribute. 
Function (tanh) disseminates slopes. Thus, averts vanishing or exploding. At that point, the subsequent stage 
goes to an introduction (like RNN) between the present state and the past state. ܥ௧ = 	 ௧݂ 	∗ ௧ିଵܥ + ሚ௧ܥ ∗ ݅௧	 ௧݂ is about how much past state will contribute and ݅௧	is about how much the current contribution will add to the 
new shrouded state description. The following condition is about yield (݋௧) in each time step and making a 
hidden state ℎ௧ which is a function of cell ܥ௧ , not ℎ௧ିଵ. ݋௧ = )ߪ ௢ܹ[ℎ௧ିଵ; [௧ݔ + ܾ௢) ℎ௧ = )ℎ݊ܽݐ (௧ܥ ∗  ௧݋
A significant reality about LSTM is that there is no need to concern about reaching a locally optimal solution. 
The vanishing or fading gradient is a typical issue happens during ANN utilizing gradient-based learning 
techniques. This is accomplished by using a fractional derivative of the error function to each parameter in each 
iteration of the training process, however, gradient values (moving to the highest point of the matrix) 
continuously become little enough that the weight changes are insignificant. 

Therefore, the learning procedure gets slower, and in progressively extreme cases, it stops the learning 
procedure. In feed-forward neural systems (MPL, CNN, … ) it happens on account of numerous layers and in 
RNNs, it is a direct result of the steps.  

LSTM can learn to set explicit transient reliance. It implies units have memory for a short or a long-lasting 
period and neurons (inside their pipeline) kept a set of memory to take into consideration handling successive 
and worldly information. It is finished by the plausibility of passing data from the past cell with no change, 
rather than iteratively adjustment at each time-step or layer. Loads also are relied upon to meet their ideal 
qualities. In this manner, by including three entryways (input, yield, overlook) and ܥሚ௧, this system takes care of 
the issue of the vanishing of inclination and helps with controlling mistakes during back-spread. 

4. Experimental Work 

The models in LSTM are controlled by Python and a piece of similar equipment, to have an equivalent 
circumstance to pass judgment.  

1.1.1. Cross-validation and running model 

Albeit cross-validation is a way to deal with maintaining a strategic distance from over/under-fitting, 
information is enough to abstain from overfitting. (Rashid et al., 2018) Now, we isolate the information to 
evaluate the intensity of expectation in the following part 

1.1.2. Data Processing 

For any system, we should initially import the libraries and information handling identified with our work. Here 
we called NumPy, matplotlib. pylot and panda are the libraries from the start. At that point, we should downsize 
the information in a similar range. This is called highlighting scaling, and minmax scaler which is the device to 
be called. 

The subsequent stage goes to making an information structure. This is presumably the most significant of 
making a model, in which we locate the best time steps. It is gained by tedious trials and, 60 was the best 
outcome for this examination. It implies we need our system to have a memory of 60 characters and one yield. 
We have to set our information as reliance and independence. By picking 60 as time steps, information Num.1 
to information Num.60 makes the principal yield. At that point, information Num.2 to information Num.61, 
sends out the second yield, etc. From that point forward, we should reshape information dependent on RNN.  
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1.1.3. Building Network 

Presently we have to call Sequential, LSTM, Dense and Dropout from Keras (backend by TensorFlow or 
PlaidML). In any case, we utilized a consecutive layer and afterward characterized LSTM with 50 neurons in 
each layer. Here we characterize the shrouded layers of the system which is 2. Our dropout for each layer is 
20% and the thick layer is only for our yield in the last layer. Note that, since we only one yield, the unit 
characterizes one. For aggregating the system, which is the subsequent stage, we utilized "Adam" as a 
streamlining agent that chips away at non-stationary destinations and issues (Kingma and Ba, 2014) and 
“Mean_Squred_Error” for our loss.  

The subsequent stage is fitting the model for the preparation set. Here we run the ages (number of preparing 
times) and cluster size. The group size clarifies all outnumber of preparing that information utilized. we won't 
give all information to NN without a moment's delay and rather than that, NN gets the information in a few 
phases and littler groups. The quantity of clumps rises to the quantity of emphasis to finish preparing. Since 50 
in the cluster size of our model, the quantity of emphasis for the whole informational collection is 44. Age 
speaks to the all-out number of times; a learning calculation sees the total dataset. “Since deep learning utilizes 
gradient descent to upgrade model, it makes sense to pass the whole dataset through a solitary system multiple 
times to update the weights and thus obtaining a better and more accurate prediction model”. (Siami-Namini and 
Namin, 2018) Our calculation is executed in python seeking after Keras (TensorFlow Back-End) and sorted in 3 
sections with the subtleties as underneath: 

1.1.4. Making the expectations and picturing the outcomes 

Here was the last some portion of the model which goes to real and predicted load and envisioning the 
outcomes.  

5. Experimental Results and Discussion 

Figure.1 presents the data (train + test) categorizes in three climate zone and an hour of max load in the second 
row. As it shows the trend of consumption and max load is different in cases. 

 
Figure 1: Data and hour of max load in cold (first column), tropical (middle column) and temperate (last column) zone 
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Total report of our investigations with LSTM is as underneath: 

Figure 2: Total report of predictions in cold, tropical and temperate zone 
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Figure.2 exhibits the pattern of prediction in networks after increasing the number of epochs. Epochs may not be 
equivalent to the number of cycles and the quantity of best ages to prepare a model isn't clear, however, the 
trend of estimation get better by increasing epochs in most steps. 

The table beneath shows the correlation between LSTM to figure exactness. 

Table 1: Forecast Accuracy (ARDABIL) 

ARDABIL MAPE MSE MAD TS 

EPOCH.25 2.92% 85.46  8.14  30.47  

EPOCH.50  2.35% 74.26  6.38  -27.63  

EPOCH.125  2.33% 68.60 6.36 -18.98 

EPOCH.250 1.36% 20.90 3.77 3.01 

EPOCH.300 1.30% 18.14 3.60 3.36 

EPOCH.400 1.26% 17.34 3.49 19.15 

EPOCH.500 1.26% 17.55 3.51 13.12 

Table 1: Forecast Accuracy (KHOUZESTAN) 

KHOUZESTAN MAPE MSE MAD TS 

EPOCH.25 2.25%  464.56  17.43  26.36  

EPOCH.50  3.55%  980.89  27.69  51.46  

EPOCH.125  2.28% 440.75 17.60 26.34 

EPOCH.250 2.57% 523.62 19.88 33.28 

EPOCH.300 2.05% 432.82 15.63 -9.56 

EPOCH.400 2.50% 536.59 19.31 22.70 

EPOCH.500 2.49% 673.93 18.98 -26.35 

Table 1: Forecast Accuracy (KHOUZESTAN) 

TEHRAN MAPE MSE MAD TS 

EPOCH.25 11.58%  5518.53  45.58  -44.57  

EPOCH.50  10.56%  4712.36  41.73  -30.75  

EPOCH.125  10.70% 3821.57 45.61 11.35 

EPOCH.250 10.78% 3912.66 46.15 16.95 

EPOCH.300 10.81% 3983.79 47.05 21.22 

EPOCH.400 13.95% 5490.38 64.16 38.67 

EPOCH.500 10.49% 4046.14 43.01 -12.31 

Formulas of methods in table 1,2,3 are as below:  ܧܲܣܯ	݊ܽ݁ܯ)	݁ݐݑ݈݋ݏܾܣ	݁݃ܽݐ݊݁ܿݎ݁ܲ	(ݎ݋ݎݎܧ = 100%݊ ෍ฬܣ௧ − ௧ܣ௧ܨ ฬ௡
௧ୀଵ  

(ݎ݋ݎݎܧ	݀݁ݎݑݍܵ	݊ܽ݁ܯ)	ܧܵܯ = 1݊෍(ܣ௧ − ௧)ଶ௡ܨ
௧ୀଵ  

(݊݋݅ݐܽ݅ݒ݁ܦ	݁ݐݑ݈݋ݏܾܣ	݊ܽ݁ܯ)	ܦܣܯ = 1݊෍|ܣ௧ − ௧|௡ܨ
௧ୀଵ  

(݈ܽ݊݃݅ܵ	݃݊݅݇ܿܽݎܶ)	ܨܶ = 	∑ ௧ܣ) − ܦܣܯ௧)௡௧ୀଵܨ  

Where ܣ௧ and ܨ௧ are actual and forecast, respectively. 

As the table shows for Ardabil (cold zone), the accuracy of prediction in epochs 400 and 500 is the same while 
in Khuzestan as tropical zone, the best answer is in epoch 300. Tehran, on the other hand, does not represent a 
direct relation with increasing epochs. The trend has fluctuated and the best result is in epoch 500 while in the 
best case, the accuracy of prediction is not like other zones, 
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6. Improvements 

In this paper, "daily demand" information was utilized for forecasts, while utilizing different files in a board of 
information may improve the presentation of the models. In conclusion, the hybrid models or other complex 
advancement methods, for example, extrapolation or other metaheuristic calculations could report fascinating 
outcomes. 

7. Conclusion 

Developing countries need to have a prediction of demand and supply of electricity due to increasing 
consumption, especially in a max load of the day. In this paper, we used a daily load of power in IRAN and with 
filtering the max load in the day, tried to forecast the load with LSTM in deep learning. Since climate change in 
IRAN has the greatest effect of consumption, prediction categorized in 3 different climate zone and models ran 
by 6 types of epochs which proved for data in this research, number of epochs did not always get the best 
answer, and MADP is 1.26%, 2.5% and 10.49% in cold, tropical and temperament zone, which is completely 
acceptable. 
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