Risk assessment of the presence of various organic and inorganic compounds in oil flows in different units of refineries by methods of FMEA and PHA

Mehrzad Zandieh

Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran mehrzad.zandieh@yahoo.com

Abstract - In this new and applied study, it has been investigated the risks of presence of Nitrogenous organic compounds such as quinoline and indole and Naphthenic acids and various inorganic compounds (S, FeS, H₂S, water, inorganic salts, Sediment) in oil flows in different units of refineries. Hazards, their effects and related causes were identified. Control and preventive actions was suggested for decreasing risks. Results showed that with applying control and preventive actions, risk numbers decreased significantly for both FMEA and PHA methods. These showed that all control and preventive actions were fully effectiveness and appropriately.

Key words: FMEA, PHA, Risk assessment, Refinery, organic, inorganic components.

1. Introduction

There is often a negative attitude among the population in the society about the risk concept. They have considered it as a sign of a damage. danger and negative effects as well as fail probability toward achieving the predefined goals of the considered project [1]. While Britain Standards Institute, knows risk as combination of occurrence and results of a hazardous event [2].

Risk assessment determines the qualitative analysis of risk potential regarding the sensitivity or vulnerability of the surrounding environment [3]. In general, there are currently more than 70 risk assessment methods in the world which are divided in to two qualitative and quantitative groups [4].

Quantitative assessment focuses on risk factors and preventive measures and is done to eliminate or prevent risks [5]. Failure modes and effects analysis (FMEA) is one of the modern methods of assessment and risk management in oil, gas and petrochemical industries [6].

The purpose of FMEA is to increase process reliability by preventing the system identified failures and reducing the adverse consequences thereof. FEMA requires detailed and detailed information about the system under investigation [7-9].

Tae-guKim Jeong (2002) [10] studied focuses on the current status of risk management activities conducted by the petrochemical plants in Korea, and on the trends in the global market.

M. Jabbari Gharabagh (2009) [11] studied comprehensive risk assessment and management of petrochemical feed and product transportation pipelines. In this research, using probabilistic and indexing models, an algorithm is developed, which overcomes most of the limitations of the models. , the results of the relative risk assessment indices were used as an adjusting factor to correct the pipeline failure rate and to develop an algorithm for the comprehensive risk assessment technique. Sensitivity analysis of the algorithm was carried out. The present algorithm enables the identification of most of the pipeline failure causes.

Rong-Hwa Huang (2012) [12] studied an assessment model that examines quantity and quality factors for equipment risk management in the petrochemical industry. The proposed model had five dimensions—financial performance, logistical support, service level, learning and innovation, and risk control. Proposed model provided a valuable reference for decision-making in equipment risk management.

XU Xiaonan (2012) [13] studied Leakage frequency of ethylene horizontal tanks and its attachments and may lead to risk accident were analyzed by SAFETI and leak quantitative risk analysis software of Norwegian DNV company. Through the simulation results of four accident Scene, which gas leakage of the tank, tank rupture, leakage in the pipe from the tank to the pump, leakage in the pump and its export pipe, evaluated the effect of leakage, radiation, explosion to the staff and installations in the factory so that Determined the risk of casualties and property loss in ethylene tank farm.

Wei Wu Guang (2013) [14] studied Risk analysis of corrosion failures of equipment in refining and petrochemical plants based on fuzzy set theory. In this model, two essential parts of failure risk (i.e., failure likelihood and severity of failure consequence) are first estimated by using fuzzy synthetic evaluation. The results show that this model is effective and feasible.

In this study, for the first time, it was studied risk assessment of presence of different mineral and organic compounds in oil streams in different units of refineries with FMEA and PHA methods.

2. Methodology

2.1. PHA Methodology

Risk assessment matrix in table 1 shows severity of dangers and probabilities of occurrence.

Risk Assessment Matrix										
Partial (4)	Boundary (3)	Critical (2)	Disastrous (1)	Severity of danger Probability of occurrence						
4A	3A	2A	1A	Repeated (A)						
4B	3B	2B	1B	Possible (B)						
4C	3C	2C	1C	Occasional (C)						
4D	3D	2D	1D	Very little (D)						
4E	3E	2E	1E	Improbable (E)						

Table 2 shows the risk criteria and risk classification. Every risk criteria relates to oneself risk classification.

Table 2. Risk effetta and its related classification in TITA method								
Risk classification	Risk criteria							
1A, 1B, 1C, 2A, 2B, 3A	unacceptable							
1D, 2C, 2D, 3B, 3C	Undesirable							
1E, 2E, 3D, 3E, 4A, 4B	Acceptable but with the need for revision							
4C, 4D, 4E	Acceptable without revision							

Table 2: Risk criteria and its related classification in PHA method

2.2. FMEA Methodology

Chemical Engineer of process design is the primary responsibility for risk assessment.

Next step is identifying the Potential Failure Modes that occurs in the defined operation.

The potential impacts are the consequence and consequence of Potential Failure Modes that occur on the next level operations.

Severity is intensifying of the rating that indicates how serious the damage caused on the product.

Potential Cause/ Mechanism of Failure: Identify process deficiencies and deficiencies that can cause failure.

Occurrence: The number of occurrences is the rank associated with the probability of a crash occurring.

Current Process Control: There are methods and techniques used to prevent failure (or causes of failure) or to identify failure (or causes) at the same production facility or subsequent stations (before leaving the product out of process).

Rank detection: The diagnosis is an estimate of the probability that current process controls can detect the state of failure or the cause of the failure before leaving the manufacturing process or assembly. In determining the rating, you must examine the ability of these controls to detect the state or cause of the crash.

Table 3 shows the frequency of occurrence of defects (O) that includes rating, percentage of occurrence and check the probability of a fault.

The frequency of occurrence of defects (O)							
Check the probability of a fault	Percentage of occurrence	RATING					
Very high; The occurrence of flaw is almost certain.	1 defect per 10 items 1 defect per 20 items	10 9					
High; Defects usually happen.	1 defect per 100 items 1 defect per 200 items	8 7					
Medium; Fatigue sometimes happens.	1 defect per 500 items 1 defect per 1000 items	6 5					
Little; Flaw rarely happens.	1 defect per 2000 items 1 defect per 5000 items	4 3					
Unlikely	1 defect per 10000 items 1 defect per 20000 items	2 1					

Table 3: Occurrence of defects (O)

Table 4 shows detection scale (D) that includes rating, detection capability and fault detection review.

Table 4: Detection Scale (D)

(D) Detection scale							
Fault Detection Review	Detection capability	RATING					
There is no control over the process, or existing controls cannot determine the cause of the fault mechanism.	Absolutely impossible	10					
The likelihood that existing controls can detect the fault mechanism and the occurrence of a fault is unlikely.	Very unlikely	9					
The likelihood that existing controls can detect the fault and failure mechanism is very rare.	Unlikely	8					
The likelihood that existing controls can detect the fault and failure mechanism is very limited.	Very little	7					
The probability that existing controls can detect the fault and defect mechanism is low.	little	6					
The probability that existing controls can detect the fault and defect mechanism is moderate.	medium	5					
The probability that existing controls can detect the fault and defect mechanism is moderate to high.	Moderate to high	4					
The probability that existing controls can detect the fault and defect mechanism is high.	High	3					
The probability that existing controls can detect the fault and defect mechanism is very high.	Very high	2					
The existing process controls will almost completely detect the cause of the fault and fault mechanism.	Almost complete	1					

RPN, Risk number is calculated by following formula: RPN= S*O*D

Where: S is Severity, O is Occurrence, D is Detection and RPN is degree of risk.

(1)

3. Results and discussions

Table 5: PHA risk assessment

			РНА			
Risk level after control actions	Control and preventive actions	Risk level	Effects	Causes	Hazards	Row
3E	Sulfur pre- purification operations (desulphurization)	3D	Reducing the useful life of the unit reforming Catalyst	The presence of sulfur compounds in the flow of feed to the reforming unit	Creating poisoning in the Reforming unit Catalyst	1
3E	Sulfur removal from the final product with separation operation	3D	Decrease the quality of final products due to color change	Absence of complete purification of sulfur compounds in pre-treatment stages	Presence of low amounts of sulfur compounds in the final product	2
2E	Covering the external wall of the pipelines with irreversible and non- oxidizing coatings with air	2D	fire	The presence of iron sulfide compounds in the tube wall	Contact iron sulfide pipelines and air	3
3E	The use of a cover on the inner side of the storage tank that does not react with hydrogen dioxide	3D	Corrosion in the walls of storage tanks	Presence of more than 6 ppm Hydrogen sulfide dissolved in oil	Formation of iron sulfide deposits	4
3E	Injectable non- harmful acid for the catalyst to adjust its acidity	3D	Reduced acidity of refined catalysts in conversion units such as cracking and reforming	The degradation of nitrogen compounds such as quinoline and indole	Creating organic bases or ammonia	5
2E	Pre-treatment of crude oil before entering the reactor2DEquipment destructionPresence of low amounts of water, sediment and mineral salts		Creation of corrosion, abrasion, sedimentation, blockage and catalyst poisoning	6		
2E	Use the appropriate gender for the piping system and the connections in such a way that the oil flow does not corrode the fluid transfer system	2D	Blockage of pipelines and contamination of products	Abrasion of pipelines, storage tanks, valves and plumbing systems	Formation of free compounds such as iron, copper, lead, nickel and vanadium	7
2E	Water injection	2D	Reduce production	The presence of sodium chloride salt precipitation	Reducing the internal diameter of the extraction pipe	8

als at points in distillation	3D	production corrosion of the distillation tower and corrosion of the condenser shell	petrochemical coke production unit The presence of magnesium chloride salts and calcium chloride in the	of coke in the final product Hydrolysis of magnesium chloride and calcium chloride at a temperature above 120 ° C, resulting in the release of dissolved	13
n where water	3D	corrosion of the condenser shell or wall of the condenser pipes Reducing the quality of	chloride in the distillation tower The presence of salts in the feed		
etreatment	3C		-		14
	ion of alkaline als at points in distillation n where water condensed	als at points in distillation 3D n where water condensed	ion of alkaline distillation als at points in 3D distillation 3D n where water corrosion of the condensed or wall of the condenser pipes Reducing the quality of products	ion of alkaline als at points in distillation n where water condensed3Dcorrosion of the distillation tower and corrosion of the condenser shell or wall of the condenser pipesThe presence of magnesium chloride salts and calcium chloride in the distillation tower83DReducing the quality of productsThe presence of salts in the feed	ion of alkaline als at points in distillation n where water condensedcorrosion of the distillation tower and corrosion of the distillation tower and corrosion of the condenser shell or wall of the condenser pipesThe presence of magnesium chloride salts and calcium chloride salts and calcium chloride in the distillation towerHydrolysis of magnesium calcium chloride at a temperature above 120 ° C, resulting in the release of distillation hydrogen chloride in the distillation3Dcorrosion of the condenser shell or wall of the condenser pipesThe presence of towerHydrolysis of magnesium calcium chloride at a temperature above 120 ° C, resulting in the dissolved hydrogen chloride in the top of the distillation toweretreatment3CReducing the products produced fromThe presence of salts in the feed into catalyticDeactivation of catalytic

						FME	CA				
					After	RPN= r control act	=72 tions RPN=24	4			
Act R P N	tion R D E T	Result O C C	S S E V	Preventive and control actions	Degree of risk (RPN)	Detectio n coefficie nt (D)	Occurrenc e (O)	Severity (S)	Causes of occurrence	Hazards	Row
21	3	1	7	Sulfur pre- purification operations (desulphurizatio n)	63	3	3	7	The presence of sulfur compounds in the flow of feed to the reforming unit	Creating poisoning in the Reforming unit Catalyst	1
12	4	1	3	Sulfur removal from the final product with separation operation	36	4	3	3	Absence of complete purification of sulfur compounds in pre- treatment stages	Presence of low amounts of sulfur compounds in the final product	2
27	3	1	9	Covering the external wall of the pipelines with irreversible and non- oxidizing coatings with air	81	3	3	9	The presence of iron sulfide compounds in the tube wall	Contact iron sulfide pipelines and air	3
18	3	1	6	The use of a cover on the inner side of the storage tank that does not react with hydrogen dioxide	72	3	4	6	Presence of more than 6 ppm Hydrogen sulfide dissolved in oil	Formation of iron sulfide deposits	4
12	3	1	4	Injectable non- harmful acid for the catalyst to adjust its acidity	36	3	3	4	degradation of nitrogen compounds such as quinoline and indole	Creating organic bases or ammonia	5
28	4	1	7	Pre-treatment of crude oil before entering the reactor	84	4	3	7	Presence of low amounts of water, sediment and mineral salts	Creation of corrosion, abrasion, sedimentati on, blockage and catalyst poisoning	6
24	3	1	8	Use the appropriate gender for the piping system	72	3	3	8	Abrasion of pipelines, storage tanks, valves	Formation of free compounds such as	7

				and the connections in such a way that the oil flow does not corrode the fluid transfer system					and plumbing systems	iron, copper, lead, nickel and vanadium	
21	3	1	7	Water injection	63	3	3	7	The presence of sodium chloride salt precipitation due to partial evaporation of water due to the drop in pressure between the head and bottom of the well in the exhaust pipe wall	Reducing the internal diameter of the extraction pipe	8
18	3	1	6	Prefiltration before the flow inlet into the heat exchangers of shell and tube	54	3	3	6	In refining processes, salt sedimentatio n in the heat exchanger tubes	Reduce heat transfer	9
15	3	1	5	Pre-treatment of salt with filtration and precipitate	45	3	3	5	The presence of salt in the supply of heavy fuel	Eclipse burners	10
18	3	1	6	Pre-treatment of salt with filtration and precipitate	54	3	3	6	The presence of salt in the asphalt unit feed	Disturbanc e of asphalt emulsions	11
21	3	1	7	Pre-treatment of salt with filtration and precipitate	63	3	3	7	The presence of salt in the input feed of petrochemic al coke production unit	Coming down the percentage of coke in the final product	12
18	3	1	6	Injection of alkaline materials at points in the distillation column where water is condensed	54	3	3	6	The presence of magnesium chloride salts and calcium chloride in the distillation tower	Hydrolysis of magnesium chloride and calcium chloride at a temperatur e above 120 ° C, resulting in the release of dissolved	13

										hydrogen chloride in the top of the distillation tower of crude oil or condenser	
21	3	1	7	Pretreatment	63	3	3	7	The presence of salts in the feed into catalytic cracking and refining units	Deactivatio n of catalysts of catalytic cracking units and refinement	14
18	3	1	6	The use of irreplaceable materials-by the use of naphthenic acid- in the equipment	54	3	3	6	The presence of naphthenic acids in crude oil and oil cuts	Formation of stable emulsions with caustic solution during desalinatio n or oil production	15

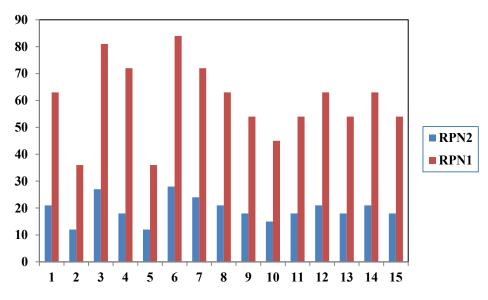


Figure 1: RPN₁, RPN₂; RPN₁ is risk numbers before control and preventive actions, RPN₂ is risk numbers after control and preventive actions.

Decrease (%)	RPN ₂	RPN1	Row
66.67	21	63	1
66.67	12	36	2
66.67	27	81	3
75.00	18	72	4
66.67	12	36	5
66.67	28	84	6
66.67	24	72	7
66.67	21	63	8
66.67	18	54	9
66.67	15	45	10
66.67	18	54	11
66.67	21	63	12
66.67	18	54	13
66.67	21	63	14
66.67	18	54	15

Table 7: RPN1, RPN2, and Percent of decrease of risks

Referring to the risk assessment table (table 5) with PHA method, it was identified 15 important hazards. We conclude that 40% of the risks are undesirable and 60% are acceptable but need revision which can be mitigated by the preventive and control actions mentioned in table 5. Risk surfaces decreased due to decreasing probability.

With risk assessment using FEMA method, min of risk number is 36 and max of risk number is 84 (table 6, table 7). Other risk numbers are between these two numbers.

Referring to the RPN numbers obtained in the FMEA method, we conclude that we choose RPN = 72 which corresponds to row 7 as the final RPN. The reason for this choice is why the formation of free compounds such as iron, copper, lead, nickel and vanadium due to wear of pipelines, storage tanks, valves and piping systems, resulting in the closure and blockage of pipelines and contamination of products which is a critical and undesirable state.

Figure 1 shows a comparison between risk numbers before and after applying preventive and control actions. Table 7 shows the decrease percent of different hazards after applying control actions.

Figure 1, Table 7 shows that all RPN numbers decreased with applying control and preventive actions. This decrease was significantly. This shows that all preventive and control actions are appropriate and effectiveness. Control and preventive actions shows that treating and pre-treating streams included different organic and mineral components is very necessary for preventive of hazards. Also equipment design with appropriate materials that have non-corrosive properties is completely necessary.

4. Conclusions

This study showed that a good engineered process design is very necessary and important for preventing of hazards. Also it was showed that concepts of chemistry and chemical engineering can help to a successful risk assessment. Also FMEA is better that PHA method for risk assessment in design and preventive phase. Because FMEA is completely a quantitative method but PHA is a semi-quantitative method.

References:

- [1] Kerzner H. Project management a systems approach to planning, scheduling and controlling, John Wiley & Sons, New York, 2003.
- [2] Wright A. Risk and Un certainty in Construction 2003. http://www.construction.ualberta.ca[Accessed March 2005].
- [3] Muhlbauer W. Pipeline Management Manual, 2nd Editio. Gulf Professional Publishing, 1996, P. 438.
- [4] Mathews M, Karydas D, Delichatsios M. A performance-based approach for fire safety engineering: A comprehensive engineering risk analysis methodology, a computer model, and a case study, Fifth International Symposium on Fire Safety Science, International Association for Fire Safety Science, 1997, 595-606.
- [5] Young-Do J, Daniel A. Individual risk analysis of high-pressure natural gas pipelines, J Loss Preven in the Proc Indus 2008; 21: 589-95.
- [6] Allen HH, chia-wei H, Tsai-Chi K, Wei-Cheng W. Risk evaluation of green components to hazardous substance using FMEA and FAHP, Ex Sys with Appli 2009; 36: 7142-47.
- [7] Waterland LR, S Venkatesh, S Unnasch. Safety and performance assessment of ethanol/diesel blends (E-diesel). 2003: National Renewable Energy Laboratory.

- [8] Xiao N, et al. Multiple failure modes analysis and weighted risk priority number evaluation in FEMA. Engineering Failure Analysis 2011; 18(4): 1162-70.
- [9] Zhou J, T Stalhanne. Using FMEA for early robustness analysis of Web-based systems. In Computer software and Application Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International. 2004. IEEE.
- [10] Faisal I.KhanS.A.Abbasi. TORAP a new tool for conducting rapid risk-assessments in petroleum refineries and petrochemical industries. Applied Energy. Volume 65, Issues 1–4, April 2000, Pages 187-210
 [11] M. JabbariGharabagh^a H.Asilian^bS.B.Mortasavi^b A. Zarringhalam Mogaddam^c E.Hajizadeh^d A.Khavanin^b, Comprehensive risk
- [11] M. JabbariGharabagh^a H.Asilian^bS.B.Mortasavi^b A. Zarringhalam Mogaddam^c E.Hajizadeh^d A.Khavanin^b, Comprehensive risk assessment and management of petrochemical feed and product transportation pipelines. Journal of Loss Prevention in the Process Industries. Volume 22, Issue 4, July 2009, Pages 533-539.
- [12] Rong-HwaHuang^{al}Chang-LinYang^aChung-SzuKao^{b1}, Assessment model for equipment risk management: Petrochemical industry cases. Safety Science. Volume 50, Issue 4, April 2012, Pages 1056-1066.
- [13] XU Xiaonan, WANG Fang, HUANG Min, BAI Jing, Li Li, Security quantitative risk analysis of ethylene horizontal tanks of a petrochemical company, Procedia Engineering 45 (2012) 489 – 495.
- [14] Wei WuGuang, xu Cheng Hai, jun Hu, Qi Zhou, Risk analysis of corrosion failures of equipment in refining and petrochemical plants based on fuzzy set theory, Engineering Failure Analysis, Volume 32, September 2013, Pages 23-34.