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Abstract- The use of renewable energies has become widespread due to bioenvironmental concerns and a 
shortage of fossil fuels. In designing a robust controller for wind turbine system, variable speed is 
amongst one of the challenges to today’s engineering. The wind energy transformation system includes 
complex aerodynamic and electrical components along with the unpredictable performance of wind speed 
and the other turbulence factors that render the existence of a robust controller necessary. In the present 
article, a robust controller has been proposed based on LMI method for variable-speed wind turbines 
with DFIG. To do so, the linear matrix inequality theories have been seminally explicated and the wind 
turbines and their nonlinear modeling have been subsequently introduced. Next, the linear model of the 
wind turbine system has been extracted based on the nonlinear model and offered within the format of 
M-Δ structure. Then, the linear matrix constraints have been defined for it and solved using MATLAB 
following which the feedback law is extracted and enforced on the system. The simulation results 
indicated that the controller has a good response. 

Keywords: Wind turbine, Robust control, Linear matrix inequality  

1. INTRODUCTION 

During the past centuries, humankind has made use of wind as a source of energy. During the 17th and 18th 
centuries, the wind was considered as useful energy. During the late 19th century, the first experiments were 
carried out for producing electricity by the use of wind but later on, little attention was paid to wind energy for 
generating power. It was with the expensiveness of the fossil fuels and oil that the attentions were once again 
directed towards renewable energies like the wind. Nowadays, wind energy is one of the important arms in 
generating power. However, in manufacturing and installing a wind turbine for generating power, energy 
generation, and such scales as output, cost, the effect on the power grid and so forth are of great importance.  

Control system plays an important role in improving the output and performance of the wind energy conversion 
systems (WECS). The use of proper wind turbine controllers contributes to the maximization of the controlled 
power of the available wind energy and supports the machine and the structure in the course of extreme wind 
conditions. The complicacy of designing optimum controllers for wind energy conversion system is increased 
with the increase in the size of their power. To reach the maximum performance, the majority of wind turbines 
work in the variable speed (Vs) mode and variable pitch (Vp) angle. 

In 2007, Bianchi used black-box method and model fitting technique based on system response data for 
identifying the wind energy conversion system’s model [1]. There are many reasons for the use of DFIG wind 
turbines amongst which the possibility of the turbine energy’s storage, reduction of stress in the mechanical 
structure, reduction in the acoustic noise, active and reactive power controllability and some others can be 
pointed out. In case of having no exact wind model and for system uncertainties, there is a need for robust 
controllers and use has been herein made of LMI method for the ease of calculations. In LMI method, the 
limitations of the constraints should be identified. One of the challenges in the available robust controllers is the 
improper response speed for the complex and time-consuming nature of problem solving. To overcome this 
problem, linear matrix inequality (LMI) has been suggested [4]. The controller of the robust phasic multivariate 
predictor model has been designed using LMI formulation via solving a convex optimization problem according 
to LMI conditions [5]. The output feedback H2|H∞ controller designing method has been suggested based on 
LMI for power system stabilizers. The robust power system stabilizers outperform the conventional power 
system stabilizers and have the damping ability for various kinds of generators [6]. Quasi-LMI formula can be 
utilized for designing uncertainty and wind turbines with turbulence. This controller exhibits a relatively 
acceptable performance against chaos [7]. The continuous-time infinite horizon nonlinear square optimization 
control problem has been developed based on NSPS for a discontinuous-time state with the use of weighted 
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matrix depending on states in cost function [8]. A robust control methodology has been proposed using 
minimum control from the set of LQG maxims for controlling the variable speed and variable pitch angles’ 
classes of the wind turbines. These controllers display a good performance against chaos and reference speed 
variations [9]. The wind turbine’s rotation speed and the output power are controlled by manipulating the pitch 
angle of the vanes (in a fixed generator torque). At first, a classic PID controller has been designed based on 
root place analysis whereas the second design belongs to a robust H2|H∞ controller combined with μ based on 
DK replication algorithm. The results indicate that the robust controller guarantees the stability and performance 
of uncertainty systems [11]. 

The present study aims at investigating the inequality constraints of wind turbines and subsequent designing of 
robust controllers based on linear matrix inequalities. In the second part, the wind turbines and their generators 
are explicated. The third section deals with the principles of designing robust controllers. In the end, the method 
of designing robust controllers based on LMI is offered. The fourth section presents the results obtained from 
the designing method described in the third section. The conclusion and suggestions are also given in the fifth 
section.  

2. Introducing Wind Turbines: 

Wind turbines are classified into two groups of horizontal axis wind turbines (HAWT) and vertical axis wind 
turbines (VAWT) based on their rotation and rotation axis; they can be installed offshore and in the land. The 
main property of the HAWT is the high wind energy conversion output due to the vanes’ designing style and 
access to stronger winds but they need a stronger tower for supporting their heavy weight because of which the 
costs of installation are increased. The VAWT have lower installation advantages such as lower wind energy 
conversion output due to the weakness of the wind in the lower section of the vanes and the resultantly more 
limited aerodynamic functioning of them. There is another form for classifying the wind turbines based on speed 
and power control methods. Wind energy conversion to fixed and variable speeds is also a classification 
method. Fixed-speed wind turbines (FSWT) rotate in a fixed velocity and the maximum energy conversion 
output can be attained only in given wind speed and the system output is decreased on the other wind speeds. 
Variable-speed wind turbine (VSWT) can provide the maximum energy conversion output in the entire span of 
a vast range of wind speeds. The turbine can continuously regulate the rotation speed in connection with wind 
speed. Another type of generator is a wind turbine system with an inductive generator (DFIG) [14]. For 
variable-speed systems with a speed change in a range from +30 to -30 percent of the synchronous speed, the 
doubly fed inductive generator can be a good solution. Amongst the advantages of DFIG, the followings can be 
pointed out: 1) having control over the reactive power; 2) having independent control over the active and 
reactive powers along with rotor flow control; 3) possibility of being magnetized from the rotor side; and, 4) the 
ability of generating reactive power that is delivered to stator. DFIG’s modeling has been presented beneath: 

2.1. DFIG Model 

The fifth order dynamic equations of DFIG are obtained by transformation of three-phase inductive machine’s 
equations to d-q asynchronous rotation specifications [15]. The turbulence mode is defined as  𝑤 ൌ

ൣ𝑣ௗ௦𝑣௤௦𝑖ௗ௥
௥௘௙𝑖௤௥

௥௘௙൧
்
by selecting the state variables in the form of 𝑥 ൌ ൣ𝑖ௗ௦𝑖௤௦𝑖ௗ௥𝑖௤௥൧

்
 wherein i denotes current and 

s denotes rotor and selecting the control variables in the form of   𝑢 ൌ ൣ𝑣ௗ௥𝑣௤௥൧
்
  wherein v denotes voltage (ref 

means reference). The observed outputs are 𝑦 ൌ ൣ𝑖ௗ௥𝑖௤௥൧
்
 and the optimal outputs are 𝑧 ൌ ൣ𝑖ௗ௥

௥௘௙ െ 𝑖ௗ௥𝑖ௗ௥
௥௘௙ െ

𝑖௤௥൧
்
. Ls, Lr, Lm, W0, Δw, Rs and Rr  are the rotor’s and stator’s resistance, angular speed variations, initial 

angular speed, common, rotor and stator inductance, respectively. The following generalized form can be 
obtained: 

𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵ଵ𝑤 ൅ 𝐵ଶ𝑢 

𝑧 ൌ 𝐶ଵ𝑥 ൅ 𝐷ଵଶ𝑤 ൅ 𝐷ଵଶ𝑢 

𝑦 ൌ 𝐶ଶ𝑥 ൅ 𝐷ଶଵ𝑤 ൅ 𝐷ଶଶ𝑢 

(1) 

It has the following matrices: 

𝐴 ൌ
1

𝐿௠
ଶ െ 𝐿௥𝐿ଶ

൦

𝐿௥𝑅௦

െ𝐿௠
ଶ ∆𝑤 ൅ 𝐿௥𝐿௦𝑤଴

െ𝐿௠𝑅௦
𝐿௠𝐿௦∆𝑤 െ 𝐿௠𝐿௦𝑤଴

െ𝐿௥𝐿௦𝑤଴ ൅ 𝐿௠
ଶ ∆𝑤

𝐿௥𝑅௦
𝐿௠𝐿௦𝑤଴ െ 𝐿௠𝐿௦∆𝑤

െ𝐿௠𝑅௦

െ𝐿௠𝑅௥
𝐿௠𝐿௥𝑤଴ െ 𝐿௠𝐿௥𝑤଴

𝐿௦𝑅௥

𝐿௥𝐿௦∆𝑤 െ 𝐿௠
ଶ 𝑤଴

𝐿௠𝐿௥∆𝑤 െ ∆𝐿௠𝐿௥𝑤଴
െ𝐿௠𝑅௥

𝐿௠
ଶ 𝑤଴ ൅ 𝐿௥𝐿௦𝑤଴

𝐿௦𝑅௥

൪ (2) 

𝐵ଶ ൌ ൦

𝐿௠ 0
0 𝐿௠
െ𝐿௦ 0
0 െ𝐿௦

൪ , 𝐵ଵ ൌ ൦

െ𝐿௥
0

𝐿௠
0

0
െ𝐿௥

0
𝐿௠

0
0
0

0𝑤଴

0
0
0
0

൪ (3) 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Abbas Rasaienia et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i6/191106099 Vol 11 No 6 Dec 2019-Jan 2020 110



𝐶ଵ ൌ ቂ0   
0    

0   
0   

െ1
0

   0
െ1

ቃ , 𝐶ଶ ൌ ቂ0   
0   

0   
0   

1   
0  

0
1

ቃ (4) 

𝐷ଵଵ ൌ ቂ0   
0   

0   
0   

1   
0  

0
1

ቃ , 𝐷ଵଶ ൌ 𝐷ଶଵ ൌ 𝐷ଶଶ ൌ 0 (5) 

The active and reactive powers of the stator and rotor are: 

𝑃௦ ൌ 𝑣ௗ௦𝑖ௗ௦ ൅ 𝑣௤௦𝑖௤௦ 

𝑄௦ ൌ 𝑣௤௦𝑖௤௦ െ 𝑣ௗ௦𝑖ௗ௦ 
(6) 

𝑃௥ ൌ 𝑣ௗ௥𝑖ௗ௥ ൅ 𝑣௤௥𝑖௤௥ 

𝑄௥ ൌ 𝑣௤௥𝑖ௗ௥ െ 𝑣ௗ௥𝑖௚௥ 
(7) 

𝑃 ൌ 𝑃௥ ൅ 𝑃௦ 

𝑄 ൌ 𝑄௥ ൅ 𝑄௦ 
(8) 

2.2. Modeling Wind Turbines: 

At first, the turbine’s torque is calculated: 

𝑇 ൌ
𝜌𝐴𝑉ଷ𝑐௣

2𝜔௥
 (9) 

With 𝐶௣ ൌ 𝑐ଵ ቀ
௖మ

ఒ೗
𝑐ଷ𝛽 െ 𝑐ସቁ 𝑒

ష೎ఱ
ഊ೗ ൅ 𝐶଺𝜆  where  C1 = 0.5176 , C2 = 116 , C3 = 0.4 C4 = 5 , C5 = 21 , C6 = 0.0068; 

A is the surface area of the turbine’s brush and ρ is the air density and V is the wind speed and is the rotor’s 
speed. 

The electrical torque takes the following form: 

𝑇 ൌ 𝐿௠𝑖௤௥𝑖ௗ௦ െ 𝐿௠𝑖ௗ௥𝑖௤௦ (10) 

Now that the torque rates have been obtained, the rotor and generator’s speeds can be written as shown below: 

𝐽௥𝜔ሶ ௥ ൌ 𝑇 െ 𝑘ௗ௧𝜃∆ െ 𝐵ௗ௧𝜃ሶ∆ െ 𝑇௘ 

𝐽௚𝜔ሶ௚ ൌ
𝑡ௗ௧ െ 𝑘ௗ௧

𝑁௚
𝜃∆ െ

𝑡ௗ௧𝐵ௗ௧

𝑁௚
𝜃ሶ∆ െ 𝑇௚ 

𝜃ሶ∆ ൌ 𝜔௥ െ
𝜔௚

𝑁௚
 

(11) 

3. Designing the Controller: 

3.1. Designing State Feedback H∞ Controller:  

In stability analysis problem, norm and H∞ control synthesis problem, designing of robust state feedback 
controller and many of the other applications, use can be made of linear matrix inequalities. In vivid terms, such 
a vast area of use for linear matrix inequalities would be deemed illogical unless they are correctly and 
accurately solved. The main property of linear matrix inequality is that it defines a convex constraint according 
to variable decision-making vector. Due to the same reason, the feasible set is convex and can be obtained using 
convex optimization numerical algorithms, especially using a specific part of these optimization techniques 
called semidefinite programming as a generalization of linear programming. Nowadays, the majority of the 
applied algorithms depend on interior point methods [17-9].  

Theorem 1 (H∞ norm): H∞ norm of G(s) system is given as shown below [18&28]: 

൭
𝐴்𝑃 ൅ 𝑃𝐴 𝑃𝐵 𝐶்

𝐵்𝑃 െ𝛾𝐼 𝐷்

𝐶 𝐷 െ𝛾𝐼
൱ ൏ 0 

P > 0 

(12) 

In this section, the linear system is dealt with as shown beneath: 

൜
𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵ଵ𝑢 ൅ 𝐵ଶ𝜔
𝑧 ൌ 𝐶𝑥 ൅ 𝐷ଵ𝑢 ൅ 𝐷ଶ𝜔 (13) 

For the linear system, the state feedback control law would be the following: 

U = Kx (14) 

And, it gives the following closed-loop system: 

൜
𝑥ሶ ൌ ሺ𝐴 ൅ 𝐵ଵ𝐾ሻ𝑥 ൅ 𝐵ଶ𝜔
𝑧 ൌ ሺ𝐶 ൅ 𝐷ଵ𝐾ሻ𝑥 ൅ 𝐷ଶ𝜔

 (15) 
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For the linear system, the state feedback control law is designed so that: 

‖𝐺௭ఠሺ𝑠ሻ‖ஶ ൏ 𝛾 (16) 

Where, 

𝐺௭ఠሺ𝑠ሻ ൌ ሺ𝐶 ൅ 𝐷ଵ𝐾ሻ൫𝑠𝐼 െ ሺ𝐴 ൅ 𝐵ଵ𝐾ሻ൯
ିଵ

𝐵ଶ ൅ 𝐷ଶ (17) 

And, γ is a positive scalar value [31]. 

Theorem 2: H-infinity problem has an answer if and only if there is a Matrix W and a definite symmetrical 
positive Matrix X in such a way that  

ቌ
ሺ𝐴𝑋 ൅ 𝐵ଵ𝑊ሻ் ൅ 𝐴𝑋 ൅ 𝐵ଵ𝑊 𝐵ଶ ሺ𝐶𝑋 ൅ 𝐷ଵ𝑊ሻ்

𝐵஻
் െ𝛾𝐼 𝐷ଶ

்

𝐶𝑋 ൅ 𝐷ଵ𝑊 𝐷ଶ െ𝛾𝐼
ቍ ൏ 0 (18) 

When the matrices W and X are obtained, the state feedback control law is extracted from the following 
relation: 

K = WX-1 (19) 

The above problem can be expressed in the following optimized form: 

min    𝛾 

S. t. X > 0 

ቌ
ሺ𝐴𝑋 ൅ 𝐵ଵ𝑊ሻ் ൅ 𝐴𝑋 ൅ 𝐵ଵ𝑊 𝐵ଶ ሺ𝐶𝑋 ൅ 𝐷ଵ𝑊ሻ்

𝐵஻
் െ𝛾𝐼 𝐷ଶ

்

𝐶𝑋 ൅ 𝐷ଵ𝑊 𝐷ଶ െ𝛾𝐼
ቍ ൏ 0 

(20) 

Moreover, if (A, B1) is found stabilizable, i.e. 

ሺ𝐴𝑋 ൅ 𝐵ଵ𝑊ሻ் ൅ 𝐴𝑋 ൅ 𝐵ଵ𝑊 ൏ 0 (21) 

The solution in relation (20) gives a stable asymptotic closed-loop system [31]. 

3.2. State Feedback Control by Pole Assignment: 

The other method of designing state feedback control is through pole assignment. According to the structure 
given in relation [23], we know that there is a controller k for state feedback H-infinity control in such a way 
that   

‖𝐺௭ஶఠሺ𝑠ሻ‖ஶ ൏ 𝛾ஶ   holds if and only if there is a matrix W∞ and a Matrix 𝑋ஶ ൐ 0  in such a way that: 

𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵ଵ𝑢 ൅ 𝐵ଶ𝜔 

𝑧ஶ ൌ 𝐶ஶ𝑥 ൅ 𝐷ஶଵ𝑢 ൅ 𝐷ஶଶ𝜔 

𝑧ଶ ൌ 𝐶ଶ𝑥 ൅ 𝐷ଶଵ𝑢 

(22) 

ቌ
ሺ𝐴𝑋ஶ ൅ 𝐵ଵ𝑊ஶሻ் ൅ 𝐴𝑋ஶ ൅ 𝐵ଵ𝑊ஶ 𝐵ଶ ሺ𝐶ஶ𝑋ஶ ൅ 𝐷ஶଵ𝑊ஶሻ்

𝐵஻
் െ𝛾ஶ𝐼 𝐷ஶଶ

்

𝐶ஶ𝑋ஶ ൅ 𝐷ஶଵ𝑊ஶ 𝐷ஶଶ െ𝛾ஶ𝐼
ቍ ൏ 0 (23) 

When these conditions hold, the feedback gain matrix takes the following form: 

𝐾 ൌ 𝐾ஶ ൌ 𝑊ஶ𝑋ஶ
ିଵ (24) 

But, considering the fact the pole assignment is going to be used for designing the controller, the pole 
assignment constraint would be holding if and only if there is a Matrix WD and a Matrix  XD > 0  in such a 
manner that: 

𝑄 ⊗ 𝑋஽ ൅ 𝑆 ⊗ ሺ𝐴𝑋஽ ൅ 𝐵ଵ𝑊஽ሻ ൅ 𝑆் ⊗ ሺ𝐴𝑋஽ ൅ 𝐵ଵ𝑊஽ሻ் ൏ 0 (25) 

When these conditions hold, the feedback gain matrix takes the following form: 

𝐾 ൌ 𝐾஽ ൌ 𝑊஽𝑋஽
ିଵ (26) 

To reach an answer, there should be  XD =  𝑋ஶ and  WD = 𝑊ஶ  in which case, the feedback gain would be in the 
following form: 

𝐾 ൌ 𝑊ஶ𝑋ஶ
ିଵ ൌ 𝑊஽𝑋஽

ିଵ (27) 

Thus, to design the state feedback H-infinity controller through pole assignment, the relations (24) and (25) 
should be holding [31]. 
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3.3. Designing LMI-Based Robust Controllers:  

The objective of this section is designing a robust LMI-based controller for wind turbines. The wind turbine 
model along with DFIG generator and Drive Train System have been introduced and explained in the second 
section and their relations are mathematically shown beneath: 

𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵ଵ௪𝑤 ൅ 𝐵ଵ௨𝑢 

𝑧 ൌ 𝐶ଵଵ𝑥 ൅ 𝐷ଵଵ𝑤 ൅ 𝐷ଵଶ𝑢 

𝑦 ൌ 𝐶ଶଵ𝑥 ൅ 𝐷ଶଵ𝑤 ൅ 𝐷ଶଶ𝑢 

(28) 

The uncertainty is considered as a parametric one that influences Cp when being inserted in the wind speed 
relation. Robust control methods can preserve the robust system’s performance and stability in the presence of 
uncertainty. Due to the same reason, they are largely taken into account in the industrial and uncertain systems. 
Therefore, system (29) is considered as an uncertain one wherein the matrices would have uncertain parameters.  

൥
𝐴∆ 𝐵ଵ∆ 𝐵ଶ∆
𝐶ଵ∆ 𝐷ଵଵ∆ 𝐷ଵଶ∆
𝐶ଶ∆ 𝐷ଶଵ∆ 𝐷ଶଶ∆

൩ ൌ ൥
𝐴 𝐵ଵ 𝐵ଶ
𝐶ଵ 𝐷ଵଵ 𝐷ଵଶ
𝐶ଶ 𝐷ଶଵ 𝐷ଶଶ

൩ ൅ ൥
𝐵଴
𝐷ଵ଴
𝐷ଶ଴

൩ ∆ (29) 

In the above relation, Δ points to uncertainty. The system in (29) can be considered equivalent to the following 
system. 

𝑥ሶ ൌ 𝐴∆𝑥 ൅ 𝐵ଵ∆௪𝑤 ൅ 𝐵ଵ∆௨𝑢 

𝑧 ൌ 𝐶ଵଵ∆𝑥 ൅ 𝐷ଵଵ∆𝑤 ൅ 𝐷ଵଶ∆𝑢 

𝑦 ൌ 𝐶ଶଵ∆𝑥 ൅ 𝐷ଶଵ∆𝑤 ൅ 𝐷ଶଶ∆𝑢 

(30) 

Here, efforts are made to downsize the uncertainty as much as possible. It is presumed in this method that the 
answer lies in the convex system and that the state variables are available because the designing method is based 
on state feedback. To design the robust state feedback controller in the face of the uncertainties, the following 
constraints should be taken into consideration [16]. 

቎
𝐴𝑋 ൅ 𝐵ଵ௨𝑊 ൅ ሺ∗ሻ ∗ ∗

𝐵ଵ௪
் ൅ 𝐷ଵଵ

் 𝐶ଵଵ𝑋 ൅ 𝐷ଵଵ
் 𝐷ଵଶ𝑊 െ𝑅 ∗

𝐶ଵଵ𝑋 ൅ 𝐷ଵଶ𝑊 0 െ𝐼
቏ (31) 

It is worth mentioning that the sign * in the above inequality relations point to the transpose of the matrix’s 
element. Furthermore, in the above LMI, ൌ 𝐼 ൌ 𝐷ଵଵ

் 𝐷ଵଵ. The convex answers of this LMI are equal to X and W 
provided that  X = XT > 0. After obtaining the X and W uncertainties through solving the above LMIs, the state 
feedback law can be determined in the form of relation [33]: 

u = Fx (32) 

with the controller’s gain being equal to F = WX-1. 

4. Simulation: 

In this regard, it is necessary to offer a model of a wind turbine, DFIG and, Drive Train and eventually obtain 
the nonlinear model of the primary system via summing them up. Since the system has nonlinear factors, we are 
faced with a nonlinear system and, on the other hand, since the linear matrix inequality theory is specific to the 
linear systems, it is necessary to transform the nonlinear system to a linear system. To do so, use is made of 
Linmod instrument of Matlab. Next, before designing the controller, the open-loop system is investigated 
concerning its stability. Afterwards considering the explanations from the previous sections, the matrix 
constraints are defined for linear system and defined constraints are solved using Matlab. According to the 
decision-making variables obtained from solving the matrix constraints, feedback gain law is calculated. In the 
end, the attained state feedback law is inserted in the system’s equations so that the closed-loop system can be 
obtained and finally the stability and step-response of it are investigated and compared with the results obtained 
from the open-loop state. 

The wind turbine and its peripheral parameters used in the simulations can be found in Table  4-1, 4-2 and 4-3. 
These values have been excerpted from reference [16]. 

Table 4-1: Wind Turbine model’s Parameters 

Value Parameter Value Parameter 

A = 10.387 Broom surface area R = 1 Blade radius  

C2 = 116 Wind turbine coefficient C1 = 0.5176 Wind turbine coefficient 

C4 = 5 Wind turbine coefficient C3 = 0.4 Wind turbine coefficient 

C6 = 0.0068 Wind turbine coefficient C5 = 21 Wind turbine coefficient 

  𝜌 ൌ 1.225 Density of air 
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Table 4-2: DFIG Generator Parameters 

Value Parameter 

Rs = 0.023 Ω Stator Resistance 

Rr = 0.016 Ω  Rotor Resistance 

Ls = 0.18 Ω  Stator inductance 

Lr = 0.16 Ω  Rotor Inductance 

Lm = 2.9 Ω  Mutual inductance 

Table 4-3: Driven Train model’s Parameters 

Value Parameter 

𝐽௥ ൌ 55 ൈ 10଺ Low speed shaft inertia 

𝐽௚ ൌ 390 High speed shaft inertia 

𝑁௚ ൌ 95 Girth rate 

𝑘ௗ௧ ൌ 2.7 Hardness factor 

𝐵ௗ௧ ൌ 9.45 Attenuation coefficient 

𝜂 ൌ 0.97 efficiency  drive train 

Here, the control inputs have been taken equal to 𝑦 ൌ ൣ𝜔௥𝜔௚𝑇௘൧
்

,  𝜔 ൌ ൣ𝑉ௗ௦𝑉௤௦൧
்

, 𝑢 ൌ ൣ𝛽𝑇௚𝑉ௗ௥𝑉௤௥൧
்
. It is 

observed with such selections that the system model is completely nonlinear. Thus, in order to make use of the 
linear matrix inequality theories, it is necessary to render system linear. To do so, Linmod instrument in Matlab 
is applied and the u inputs are modeled using inport and the y outputs are modeled by outport blocks. This way, 
the model is linearized and a seventh order system with seven state variables, three output variables and four 
input variables is obtained. 

The state variables in this problem are equal to ൌ ൣ𝜔௥𝜔௚𝑖ௗ௦𝑖௤௦𝑖ௗ௥𝑖௤௥𝑇௘൧
்
. The state equations are defined in the 

following form:  

𝐴 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
െ1.8329𝑒 െ 7
2.4741𝑒 െ 4

0
3.4722

0
െ0.2155

1

  

1.8086𝑒 െ 9
െ2.6043𝑒 െ 6

0
െ3.4603

0
0

െ0.0105

  

0
0

0.0152
െ84.7849
െ0.2754

െ344.8276
0

   

0
0

84.8750
0.0152

344.8276
െ0.2754

0

   

0
0

െ0.1915
306.5134

0.0119
െ5.6594𝑒3

0

   

െ5.2727𝑒 െ 9
0

െ3.0651
െ0.1916
5.6594𝑒3

0.171
0

    

െ4.9091𝑒 െ 8
7.0688𝑒 െ 5

0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵௨ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
െ1,0190𝑒 െ 7

0
0
0
0
0
0

0
0.0026

0
0
0
0
0

0
0

2.9
0

െ0.18
െ0.18

0

0
0
0

2.9
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝐶ଶଵ ൌ ൥
1
0
0

  
0
1
0

  
0
0
0

  
0
0
0

  
0
0
0

  
0
0

2.9
  
0
0
0

൩ , 𝐷ଶଶ ൌ 0 

The poles of the open-loop system are 1.7804𝑒ିଶ േ 5.6403𝑒ଷ𝑗, 1.1882𝑒ିଶ േ 1.0381𝑒ଶ𝑗, െ1.3884𝑒ି଺ േ
8.6090𝑒ିସ𝑗  and െ1.0757𝑒ି଼ that is unstable for the fact that four poles fall on the right hand side of the 
Laplacian diagram. 

4.1. Designing LMI Controllers: 

To design the controller, two decision variables, namely X and W, are taken into consideration that are  7 ൈ 7  
and  4 ൈ 7 in dimensions. The two following LMIs are introduced in Matlab the toolbox of which is used for 
solving them. 

X > 0 

቎
𝐴𝑋 ൅ 𝐵ଵ௨𝑊 ൅ ሺ∗ሻ ∗ ∗

𝐵ଵௐ
் ൅ 𝐷ଵଵ

் 𝐶ଵଵ𝑋 ൅ 𝐷ଵଵ
் 𝐷ଵଶ𝑊 െ𝑅 ∗

𝐶ଵଵ𝑋 ൅ 𝐷ଵଶ𝑊 0 െ𝐼
቏  
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It is worth mentioning that the sign * in the above inequality relations points to the transpose of the matrix’s 
element. Additionally, in the above LMI,  𝑅 ൌ 𝐼 െ 𝐷ଵଵ

் 𝐷ଵଵ. The convex answers of this LMI are equal to X and 
W on the condition that X = XT > 0. The results of solving the above LMIs per each of these two decision 
variables have been given below: 

𝑋 ൌ 1𝑒 ൅ 8∗ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

3.6532
0

0.1334
െ0.0311
െ0.0088
0.0020

െ0.9525

  

0
0
0
0
0
0
0

  

0.1334
0

3.6610
െ0.9522
െ0.2156
0.0588
0.5936

   

െ0.0311
0

െ0.9522
4.4033
0.0564

െ0.2731
0.4401

   

െ0.0088
0

െ0.2156
0.0564
0.0127

െ0.0035
െ0.0357

   

0.0020
0

0.0588
െ0.2731

െ0.00035
0.0169

െ0.0273

    

െ0.9525
0

0.5936
0.4401

െ0.0357
െ0.0273
3.3456 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝑤 ൌ 1𝑒8∗ ቎

0.0000
0.0009
0.0542
0.1038

  

0.0000
3.0991

െ3.2542
െ0.3744

  

0.0000
0.0931

െ0.0297
െ0.1080

   

െ0.0000
0.0003
0.0217

െ0.3699

   

0.0000
1.5582
0.3607
0.0238

   

െ0.0000
െ0.1052
1.6292

െ2.1123

    

0.0000
0.0058
0.2136
0.4042

቏ 

It is observed that the answers are completely feasible and Matlab’s solver has made use of 57 replications. 
Moreover, the above two LMIs have been solved correctly because Matrix X is a positive and symmetrical 
definite matrix. This finding can be justified based on the eigenvalues obtained for it. The eigenvalues of the 
decision Matrix X have been given beneath: 

Eigen value (X) ={ 4.4191 ൈ 10ିହ, 4.4191 ൈ 10ିହ, 8.6446 ൈ 10ି଺, 2.0852, 3470, 4.5706, 5.099} 

After obtaining the X and W uncertainties via solving the above LMIs, the state feedback gain law can be 
obtained in the following form: 

F = WX-1 

The values obtained for F are as shown below: 

𝐹

ൌ ቎

1.2302𝑒 െ 05
23.7644
2.0680
2.4365

  

1900.8836
157993890964.141

െ165902225337.117
െ19088770864.6607

  

0.00199
3092.1091

2070.14071
െ773.1920

   

െ0.00013
െ18981.7878
39049.9156

െ23466.3975

   

0.0339
52760.2474
34663.3678

െ12636.9236

   

െ0.0020
െ305940.9610
629607.2937

െ378245.2414

    

1.2495𝑒 െ 05
23.3018
0.9961
5.3938

቏ 

Now that the feedback gain law has been obtained, the controller’s relation can be completed. 

4.2. Closed-Loop Analysis of the Wind Turbine’s DFIG: 

As it was mentioned before, the controller’s relation is in the state feedback form with its gain having been 
calculated in the previous section. To perform closed-loop analysis of the system, it is necessary to enter the 
state feedback controller into the system’s cycle and observe and analyze its closed-loop answers. According to 
the fact that the controller is of the state feedback type: 

𝑥ሶ ൌ 𝐴∆𝑥 ൅ 𝐵ଵ∆௪𝑤 ൅ 𝐵ଵ∆௨𝐹𝑥 

𝑧 ൌ 𝐶ଵଵ∆𝑥 ൅ 𝐷ଵଵ∆𝑤 ൅ 𝐷ଵଶ∆𝐹𝑥 

𝑦 ൌ 𝐶ଶଵ∆𝑥 ൅ 𝐷ଶଵ∆𝑤 ൅ 𝐷ଶଶ∆𝐹𝑥 

Therefore, using x-factoring, the system’s closed-loop matrix would be 𝐴∆ െ 𝐵ଵ∆௨𝐹. the eigenvalues of the 
closed-loop system are -3.9825 , 07,0444 , -158.90 േ  51.381j , -0.2180 , -6.9579 and -12.3685.  

Thus, it is observed that all seven eigenvalues related to closed-loop system have a negative integer part 
indicating that the closed-loop system is stable. In figures (4-6) to (4-8), the zero input answer pertains to the 
system’s outputs. 
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Figure (4-6): closed-loop system’s step answer based on the second output of the inputs 

 
Figure (4-7): closed-loop system’s step answer based on the second output of the inputs 
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Figure (4-8): closed-loop system’s step answer based on the third output of the inputs 

It is observed that the controller has been able to stabilize all of the state variables of the system and regulate 
them on zero. 

5. Conclusion: 

In this article, linear matrix inequality control method was employed for controlling the stability of wind turbine 
systems with DFIG. The model that has been utilized for the wind turbine has four control inputs. Inn [15], the 
control inputs include  𝑢 ൌ ൣ𝑉ௗ௥𝑉௤௥൧  and signal designing has been used for robust controlling of them. 
However, in the current research paper, signals 𝛽, 𝑇௚ and have been inserted into the system’s modeling process 
as the inputs respectively denoting the pitch angle and torque of DFIG. The constraints have been defined herein 
based on [16] that presents a wind turbine with parametrical uncertainty. However, in the present study’s 
simulations, besides taking the turbine’s mechanical torque into consideration, electrical torque has also been 
modeled and their outputs have been applied to extract the speeds’ updating regulations. In [33], as well, the 
robust control theory has been applied for wind turbine but their model is simpler and neglects the generator’s 
relations and equations and the uncertainty taken into account therein is only of parametrical type. 
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