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Abstract—For several years, hydrology has required a holistic theory of space-time evolution of mesoscale 
tropical rainfall which would allow us to take advantage from it to its application in water resources 
engineering. Nevertheless, various efforts have covered many techniques from the deterministic to 
stochastic models but not one gives a complete and satisfactory answer to how rainfall behaves in all its 
space-time scales and even more how its emerging patterns change. This article reviews some facts that 
show multifractality is an intrinsic property of rainfall and a coupled theory between multifractal theory 
and stochastic processes could lead us to a better understanding of tropical rainfall and its forecast. 
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I. INTRODUCTION 

According to the scientific literature there are some prevalence limitations in the hydrologic modelling related 
to questions of scale, nonlinearity and uniqueness of place. The mentioned above suggests looking through 
alternative tools to describe physical (or geophysical) processes, one of them based on the geometrical 
composition of observed data [13, 21, 25]. This geometrical composition has allowed us to recognize that 
rainfall, as one of the highly complex geophysical processes, exhibits a multifractal structure in its description 
[12].  

Multifractal measures are related to the study of physical distribution (or any other amounts) on a geometrical 
support. The general idea of a multifractal can be understood as a geometric object in terms of intertwined 
fractal subsets which have different scaling exponents [2]. The multifractal analysis has been extended in its 
applications to provide a technique for analysing complex systems, where its applications has solved some 
problems in the study of turbulence phenomena [3]. 

The identification of multifractal patterns among rainfall observed data records suggests the estimation of 
nonlinear statistical attributes designed for this purpose, such as multifractal spectra do. To understand what 
multifractal spectra is and how it works, one can consider a population generated by a one-dimensional binomial 
multiplicative process formed by 𝑁 members distributed on a line segment 𝑆 ൌ ሾ0, 1ሿ (see Fig. 1).  

 
Fig. 1. Construction of a binomial multiplicative process with parameter 𝑝ଵ ൌ 0,70 and the measure is defined on a one-dimensional 

Euclidean support. This binomial multiplicative process is plotted for the first 12 stages. 
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In order to characterize this distribution is divided the segments into pieces (or cells) of length 𝛿 ൌ 2ି௡, such 
as, 𝑁 ൌ 2௡ cells are necessary to cover the segment S. Here, n is the number of generations (or stage) in the 
binary subdivision of line segments and the cells are labelled by the indexes 𝑖 ൌ 0, 1, 2, 3, … , 𝑁 െ 1 . The 
distribution of the population over the line is specified, in the resolution 𝛿, by the number 𝑁௜ of members of the 
population in the 𝑖-th cell. The fraction of the total population 𝜇௜ ൌ 𝑁௜/𝑁  is a convenient measure for the 
content of the cell and is certain if the set 𝑀, given by 𝑀 ൌ ∑ 𝜇௜, is satisfied.  

For a binomial multiplicative process in the 𝑛-th generation (as exhibited in Fig. 1), 𝑁ሺ𝛼ሻ line segments of 
length 𝛿 ൌ 2ି௡ have the same measure 𝜇ሺ𝛼ሻ. These segments form a subset 𝑆ሺ𝛼ሻ over the geometric support 
𝑆 ൌ ሾ0, 1ሿ and this set defined by 𝑁ሺ𝛼ሻ segments has a singularity with Lipschitz-Hölder exponent 𝛼 and a 
fractal dimension 𝑓ሺ𝛼ሻ (See reference [2] for a further explanation of the singularity exponent estimation). 

The most important here is to see how 𝑓ሺ𝛼ሻ behaves for every singularity 𝛼. As it is exhibited in Fig. 2 a 
parabolic function which represents how a pattern, coming from a binomial multiplicative process, can describe 
several scales and fractal dimensions in order to represent what is called in geophysics as multifractality [2, 3, 
21]. For instance, the case that is illustrated in Fig. 2 shows a representation of a multifractal spectrum for the 
observed dissipation field of fully developed turbulence [11]. 

 
Fig. 2 Fractal dimension of subsets 𝑆ሺ𝛼ሻ as a function of α to a binomial multiplicative process with 𝑝ଵ ൌ 0,70. 

In similarly way to the turbulence processes which exhibit a well-defined multifractal spectrum, other 
geophysical processes show an akin behaviour. The multifractal spectra of Fig. 3 and Fig. 4 represents the 
structure of punctual rainfall observations located at the tropical region. The illustrations were taken out from 
the work developed in [19]. The rainfall data records were gotten from 21 gauges which are distributed over the 
metropolitan area of Bogotá and its periphery. These rain gauges belong to the Drinking and Sewer Water 
Management Company of Bogotá (EAAB E.S.P) and the rainfall data were recorded by rainfall gauges at the 
resolution of 30 minutes during the period defined by the years 1995 to 1999.  

The multifractal spectrums exhibited in Fig. 3 and Fig. 4 show an ensemble of curves, moderately symmetric 
that identify heterogeneous scales in rainfall data records and a complex group of singularities associated to a 
thorny pattern. In the same way, these multifractal spectra characterize rainfall as a non-linear physical process 
and allow us to think that its similarity to the binomial multiplicative process, can be geometrically explained by 
an akin procedure such as Meneveau and Sreenivasan in [11] did for the turbulent dissipation, another non-
linear process.  

As a complementary illustration of multifractal spectrum in rainfall, is suggested to see the work [4], which 
applied several methodologies to build the multifractal spectrum to 47 rain gauges located in the tropical Andes 
of Colombia. It is worth to express that multifractal analysis offers not only statistical quantities, but also to 
evaluate geometric features that indicate the shape and distribution of records in the space – time domain. Since 
the potentiality of the multifractal spectrum, this tool has been strongly suggested to be applied on hydrological 
sciences [4, 12, 14, 19, 20, 21].  
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Fig. 3 The multifractal spectrum of 21 rainfall time series belonging to the measurement of 21 rain gauges distributed over the metropolitan 

area of Bogotá during the period 1995– 1999. 

 
Fig. 4. The average multifractal spectrum of 21 rainfall time series belonging to the measurement of 21 rain gauges distributed over the 

metropolitan area of Bogotá during the period 1995–1999. 
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II. LOOKING FOR A MODEL OF RAINFALL 

The starting point of rainfall modelling came from long-time ago. One of the most important scientific 
reviews is presented by Waymire and Gupta [27,28,29]. In a collection of three papers, Waymire and Gupta 
[27,28,29] show the historic efforts to build a rainfall model from a stochastic point of view, besides, they 
clarify the relevant statistical aspects of rainfall that it has been looked for a suitable representation. From the 
temporal structure of rainfall, it has always been necessary to compute the number of rainfall events, to know 
the rainfall amount, its distribution in the time domain and so on. Waymire and Gupta [27,28,29] highlight that 
the number of rainfall events is associated to the thermodynamic instability of the atmosphere and it seems to 
exhibit a clustering dependence which is difficult to represent by stochastic models.  

It is clear that rainfall patterns exhibit highly complex geometries and their data have been so hard to model 
by stochastic models or even by coupled models between physically based representations and stochastic 
processes. Although significant successes have been attained using these methods, they possess an important 
limitation i.e. they are constructed to preserve only some relevant statistical attributes. Since the last reason, the 
glance of rainfall modelling has changed fairly. Nowadays, there exists important efforts in the applications of 
derived multifractal models [1, 7, 14, 19, 21, 23, 24, 26] and even more in multifractal random cascades models 
[ 5, 6, 8, 9, 15, 16, 17, 30].  

A remarkable feature of some multifractal models as that introduced by Puente and Obregón [23, 24] under 
the name as fractal – multifractal (FMF) approach is its entirely deterministic mathematical background, 
furthermore this model does not require any statistical assumptions (e.g. stationarity, ergodicity and a minimal 
record length) to model non-linear patterns such as rainfall is [14, 19, 23, 24,]. The FMF approach is obtained 
by the projection of the graph of a fractal interpolation function illuminated by a multifractal measure (see Fig. 
5). These functions interpolate a given set of 𝑁 ൅ 1 ordered points along the plane. Mathematically, the fractal-
multifractal model is represented by the graph 𝐺 ൌ ൛൫𝑥, 𝑓ሺ𝑥ሻ൯|𝑥 ∈ ሾ0, 1ሿൟ of a fractal interpolation function 
𝑓: 𝑥 → 𝑦  passing by the points: ሼሺ𝑥௡, 𝑦௡ሻ|𝑥଴ ൏ ⋯ ൏ 𝑥௡,   𝑛 ൌ 0, 1, … . , 𝑁ሽ, which are defined by the unique 
attractor of N affine maps:  

 

𝑊௡ ቀ
𝑥
𝑦ቁ ൌ ൬

𝑎௡ 0
𝑐௡ 𝑑௡

൰ ቀ
𝑥
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𝑒௡
𝑓௡

ቁ  ,   𝑛 ൌ 1, … , 𝑁         (1) 

 

Where the vertical scaling parameter 𝑑௡ satisfy |𝑑௡| ൏ 1 and the other parameters 𝑎௡, 𝑐௡, 𝑒௡ and 𝑓௡ are based 
on the contracting initial conditions:  
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Pioneers researchers applied the FMF approach to describe and to represent high-resolution rainfall time 
series [14, 23, 24]. Their results exhibit an outstanding fit between the observed and simulated patterns. Such 
results show that a geometric methodology can get the timing and size of the largest pulses and the noisiest 
fluctuations in order to get an overall appearance of rainfall data sets. In spite of these remarkable results, the 
extension of the FMF approach to describe the space-time evolution could be limited since the loss of its 
parsimony (i.e. the increasing in the number of model parameters), and even it would also complicate the 
inverse problem of it [12]. 

On the other hand, the multifractal random cascade models try to describe the multifractal structure of 
rainfall, suggesting that its structure is consistent with a multiplicative cascade mechanism. [5, 15, 16]. The 
advantage of random cascade models is that it provides a geometrical-statistical framework to understand the 
intermittency and variability of a rainfall field pattern over a wide range of space-time scales [5]. The 
mathematical background begins with a given mass density, say 𝑊଴, distributed uniformly over some bounded 
physical region (e.g. rainfall field) 𝐽 ൌ ሾ0, 1ሿௗ . If 𝐽 is a unit square ሺ𝑑 ൌ 2ሻ, 𝐽 is subdivided into 𝑏 ൌ 𝑁ଶ sub 
squares of side length 1/𝑁. Let 𝐽ሺ𝜎ሻ, 𝜎 ൌ 1, 2, 3, … , 𝑏 ൌ 𝑁ଶ  denote the partition of 𝐽 into these sub-squares. 
Now the mass density 𝑊଴ is distributed over each of these b sub squares as 𝑊଴𝑊ଵሺ1ሻ, 𝑊଴𝑊ଵሺ2ሻ, … , 𝑊଴𝑊ଵሺ𝑏ሻ, 
respectively, where 𝑊’s are mutually independent random variables with identical probability distribution (iid). 
In the case of canonical cascades, it is stipulated that 𝐸ሾ𝑊ሿ ൌ 1, which means that the ensemble average of the 
mass density 𝑊଴ is conserved after this redistribution. The last procedure is carried on iteratively such that at the 
𝑛-th generation number (or stage), the unit square 𝐽 is divided into 𝑁ଶ௡ ൌ 𝑏௡ sub squares of side length 1/𝑁௡.  

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Ricardo Monroy et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i6/191106027 Vol 11 No 6 Dec 2019-Jan 2020 1225



 

 

Fig. 5. Sketch of the fractal - multifractal approach. The central panel shows a fractal interpolation function of three points at ሼ0,0ሽ, ൛భ
మ
, 1ൟ, 

and ሼ1,0ሽ. At the bottom panel is exhibited the multifractal measure projected from fractal interpolation function and at top right panel is 
exhibited the derived measure (or model output) which is another projection of the fractal interpolation function. 

It is highlighted that random cascade models are more suitable to formulate a space-time evolution model. 
The most important works related to this kind of models began with Thomas Over [15, 16, 17] and David 
Marzan et al. [10], who proposed space-time rainfall models based on the multifractal random cascade theory. 
Both models require only a few parameters to model the observed intermittency and hierarchy of scales in the 
space-time domains. The theory proposed by Over [15] suggest that the rainfall fields are constructed from 
discrete multiplicative cascades of independent and identically distributed random variables. Furthermore, the 
time dimension of the process has an evolutionary behaviour that distinguishes the past, the present and the 
future, while the spatial dimension have an isotropic stochastic structure. On the other hand, Marzan et al. [10] 
proposed a space-time model based on scaling dynamics and introduced an important fact to couple the physical 
processes associated to rainfall: the scaling symmetries in space and time arising from the Navier-Stokes 
equations at large Reynolds numbers (characteristic of the atmospheric turbulence), should lead to a similar 
scaling behaviour for active scalar fields.  

III. THERMODYNAMIC LINKAGES IN RAINFALL 

As it was mentioned before, Marzan et al. [10] introduced an important fact in the modelling of rainfall 
processes: to introduce a physical mechanism involved in the development of rainfall. Similarly, Perica and 
Foufoula-Georgiou [22] began to formulate a predictive relationship between statistical characteristic of rainfall 
and meteorological parameters of the storms. This research would want to find an empirical connection between 
the scaling parameters (for standardized rainfall fluctuation) and thermodynamic indices of the early storm 
environment. 

The first step in the Perica and Foufoula-Georgiou [22] research was digging the dependence of scaling 
parameters on the storm type, which resulted in the unexpected evidence of non-relationship in the range of 
scales of 8 – 64 km. Nevertheless, the scaling parameters showed to be more dependent on the intensity of 
convective instability of the pre-storm environment. The second step was to validate the hypothesis that since 
the scale invariance on the developed parameterization, this last might be connected to physical characteristics 
of storms. To carry on this validation, they used the data from a dense network of rawinsonde stations to 
characterize the storm environment and determine some thermodynamic parameters such as CAPE (i.e. 
Convective Available Potential Energy), CIN (i.e. Convective Inhibition), LFC (i.e. Level of Free Convection) 
and so much more. Perica and Foufoula-Georgiou [22] developed some regression analysis to qualify the 
relation between the environmental and scaling parameters of spatial standardized rainfall fluctuations, finding a 
strong correlation between the scaling exponent Hi and the CAPE. This relation imply that a single 
thermodynamic parameter is capable to explain, approximately, 60% of the variance of the scaling parameter 𝐻௜, 
moreover this relation was able to be account for based on physical and statistical arguments, i.e., high CAPE 
values coincide with high rainfall intensities and high rainfall intensities are more likely to occur in the 
neighbourhood of pixels with high intensity, which implies relatively small fluctuation of the fields.  
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Another outstanding result related to the linkage of thermodynamic parameters and the statistical multiscale 
structure of rainfall, is reported by Parodi et al. [18]. They adopt raindrop terminal velocity as a physical 
parameter to explain the convective rainfall over a wide range of scales. This contribution summed to the results 
gotten by Perica and Foufoula-Georgiou [22] opened the door to predict the evolutionary statistical/scaling 
structure of rainfall fields via relationship between thermodynamic (or microphysical) parameters and the 
statistical description of rainfall. Future works must be leaded to find theoretical evidence of this relationship.  

IV. FINAL REMARKS 

Following to Lovejoy and Schertzer [8] ideas, to establish a non-linear theory that allow to explain the 
atmospheric dynamic over a wide range of scales, is imperative to solve. In addition, some scientific issues 
should require for answer: 1) there is not an theoretical relationship between phenomenological multifractal 
cascade models and the underlying dynamical equations of atmosphere, 2) it is not clear which is the physical 
nature of cascade fluxes and which one is relevant to understand the climate dynamic, 3) there is not valid 
space-time scaling function for all atmospheric fields, and 4) there is not a known limit of the cascade theory 
since there is observational evidence that the cascade structure extends to planetary scales and large time scales.  

According to the arguments presented here, the intermittences and fluctuations detected on rainfall patterns 
keep multifractal properties. These multifractal properties are intrinsic associated to the distribution and the 
scaling of the surrogate parameters involved in the field, nevertheless, it is necessary to get a better 
comprehension about the mechanism that explain the interrelationship between physical processes into the 
space-time evolution of rainfall fields. It is necessary to formulate the foundation of an integrated theory toward 
the holistic understanding of climate and weather dynamic, whose results would contribute to some application 
in engineering and the management of water resources. 

REFERENCES 
[1] A. Cortis, C. Puente and B. Sivakumar. “Encoding hydrologic information via a fractal geometric approach and its extensions”, 

Journal of Stochastic Environmental Research and Risk Assessment, 2009. 
[2] J. Feder, Fractals, New York, USA: Plenum Press, 1988. 
[3] U. Frish, and G. Parisi, “On the singularity structure of fully developed turbulence”, Turbulence and Predictability in Geophysical 

Fluid Dynamic and Climate Dynamic, 1985. 
[4] J. Gómez and G. Poveda, “Estimación del espectro multifractal para series de precipitación horaria en los Andes Tropicales de 

Colombia”, Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 32:125, pp. 483-502, 2008. 
[5] V. Gupta and E. Waymire “A statistical analysis of mesoscale rainfall as a random cascade”, Journal of American Meteorological 

Society, vol. 32, pp. 251-267, 1993. 
[6] J. Hernández, “Desagregación especial y espacio – temporal de la lluvia tropical y su respuesta hidrológica: implicaciones ante el 

cambio climático”, M. Eng. Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2008. 
[7] H. Huang, C. Puente and A. Cortis, “Geometric harnessing of precipitation records: re-examining four storms from Iowa City”, Journal 

of Stochastic Environmental Research and Risk Assessment, 2012. 
[8] S. Lovejoy and D. Schertzer, “Towards a new synthesis for atmospheric dynamics: space-time cascade”, Journal of Atmospheric 

Research, vol. 96, pp. 1-52, 2010. 
[9] S. Lovejoy and D. Schertzer, The Weather and Climate: Emergent Laws and Multifractal Cascades, New York, USA: Cambridge, 

2013. 
[10] D. Marzan, D. Schertzer and S. Lovejoy, “Casual space-time multifractal processes: predictability and forecasting of rain fields”, 

Journal of Geophysical Research, vol. 101, D21: 26, pp. 333-346, 1996. 
[11] C. Meneveau and K. Sreenivisan, “Simple multifractal cascade model for fully developed turbulence”, Physical Review Letters, vol. 

59, pp. 1424-1427, 1987. 
[12] O. Mesa and V. Peñaranda, “Complejidad de la estructura espacio – temporal de la precipitación”, Revista Academia Colombiana de 

Ciencias Exactas, Físicas y Naturales, vol. 39:152, pp. 304-320, 2015. 
[13] E. Monroy, J. González, and V. Peñaranda. Introducción a la formulación de planes de manejo y protección de acuíferos. Tunja, 

Colombia: Universidad Santo Tomás, 2010. 
[14] N. Obregón “A New Geometry Approach to Study One-Dimensional Complex Data Set”, Doctoral Dissertation, Ph.D. in Hydrologic 

Sciences, University of California Davis, USA, 1998. 
[15] T. Over, “Modelling space-time mesoscale rainfall using random cascades”, Doctoral Dissertation, Ph.D. in Geophysics, University of 

Colorado, USA, 1995. 
[16] T. Over and V. Gupta, “Statistical analysis of mesoscale rainfall: dependence of a random cascade generator on large-scale forcing”, 

Journal of Hydrology, vol. 33, pp. 1526-1542, 1994. 
[17] T. Over and V. Gupta, “A space-time theory of mesoscale rainfall using random cascades”, Journal of Geophysical Research, vol. 

101:26, pp. 319-331, 1996. 
[18] A. Parodi, E. Foufoula-Georgiou and K. Emanuel, “Signature of microphysics on spatial rainfall statistics”, Journal of Geophysical 

Research, vol. 116, D14119, doi:10.1029/2010JD015124, 2011. 
[19] V. Peñaranda, “Representación geométrica determinística de registros de precipitación puntual en Bogotá D.C. con el modelo Fractal-

Multifractal”, M. Eng. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2008. 
[20] V. Peñaranda, “Rainfall Complex Pattern Trend Via Multifractal Analysis”, Hydrology and Ecology: Ecosystems, Groundwater and 

Surface Water – HydroEco’2011, 2011, Abstract 336, Vienna, Austria. 
[21] V. Peñaranda, E. Monroy, and I. Rousta. “A geometric approach for the modeling of heterogeneity in physical structures and processes 

in water sources”. International Journal of Engineering and Technology (IJET). vol. 10, pp. 1806-1812, 2018.  
[22] S. Perica and E. Foufoula-Georgiou, “Linkage of Scaling and Thermodynamic Parameters of Rainfall. Results from Midlatitude 

Mesoscale Convective Systems”, Journal of Geophysical Research, vol. 101: D3, pp. 7431-7448, 1996. 
[23] C. Puente, “A new approach to hydrologic modelling: derived distribution revisited”, Journal of Hydrology, vol. 187, pp. 65-80, 1996. 
[24] C. Puente and N. Obregón, “A deterministic geometric representation of temporal rainfall: results for a storm in Boston”, Journal of 

Water Resources Research, vol. 32, pp. 2825-2839, 1996. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Ricardo Monroy et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i6/191106027 Vol 11 No 6 Dec 2019-Jan 2020 1227



[25] I. Rousta, F. Javadizadeh, F. Dargahian, H. Ólafsson, A. Shiri-Karimvandi, S. Hossein Vahedinejad, M. Doostkamian, E. Monroy and 
A. Asadolahi. “Investigation of vorticity during prevalent winter precipitation in Iran”, Advances in Meteorology, vol. 2018, pp. 1-13, 
2018. 

[26] D. Schertzer and S. Lovejoy, “Space-time complexity and multifractal predictability”, Physica A, vol. 338, pp. 173-186, 2004. 
[27] E. Waymire and V. Gupta, “The mathematical Structure of Rainfall Representations 1. A Review of the Stochastic Rainfall Models”, 

Water Resources Research, vol. 17(5), pp. 1261-1272, 1981. 
[28] E. Waymire and V. Gupta, “The mathematical Structure of Rainfall Representations 2. A Review of the Theory of Point Processes”, 

Water Resources Research, vol. 17(5), pp. 1273-1285, 1981. 
[29] E. Waymire and V. Gupta, “The mathematical Structure of Rainfall Representations 3. Some Applications of the Point Process Theory 

to Rainfall Model”, Water Resources Research, vol. 17(5), pp. 1287-1294, 1981. 
[30] D. Veneziano, P. Furcolo and V. Iacobellis, “Imperfect scaling of time and space-time rainfall”, Journal of Hydrology, vol. 322, pp. 

105-119, 2006. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Ricardo Monroy et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i6/191106027 Vol 11 No 6 Dec 2019-Jan 2020 1228




