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Abstract  

In this paper, synchronization of multiple integer order and fractional order multi-scroll Chenchaotic systems 
through polynomial fuzzy modeling using polynomial fuzzy control method is presented. For synchronization of 
multiple chaotic systems, fuzzy control is designed to ensure that multiple response systems are synchronized 
with one excitation system. Sum of squares methodis used to find feedback gains of the polynomial controller. 
Finally, simulation results show effectiveness and high efficiency of the proposed method.  

Keywords: fractional order chaotic systems, synchronization, polynomial fuzzy modelling, sum of squares 
(SOS)  

1. Introduction 

Synchronization of multiple chaotic systemshas attracted attentions recently [1]. This issue has a promising 
future for multiple communication and other engineering areas both in theory and applications [2-5]. Various 
synchronization schemes have been proposed for multiple chaotic systems. Like complete synchronization [6-
8], anti-synchronization [9], projective synchronization, ring synchronization [10] and hybrid synchronization 
[11, 12]. Two types of synchronizations have been presented to link multiple chaotic systems. One of the 
multiple response systems is synchronized with slave systems. In another case, ring transmission 
synchronization mode is performed among multiple systems with a ring connection [13-15]. These cases are 
applied successfully in hybrid and information engineering networks. Various synchronization schemes have 
been developed in the literature like linear and nonlinear feedback control [6,7], direct design method [8-10], 
pulse control [16], sample data control [17], link control [18].  

Most studies performed on synchronization of multiple systems have not used polynomial fuzzy model. In this 
study, the main aim is synchronization of multiple chaotic systems through polynomial fuzzy modelling.  

A fuzzy model is a mathematical tool for representing a nonlinear system. This fuzzy model is then used to 
analyze and design a controller. Various fuzzy models have been presented. Among these models, linear and 
polynomial type-I and type-II fuzzy sets can be mentioned.  

Although T-S fuzzy system has shown various advantages, but it has some disadvantages. Considering 
nonlinearity concept, a mathematical model can be described as a T-S fuzzy model by considering acompact 
agent area. Then, T-S fuzzy model can be considered as a local nonlinear model. Analytical results of the T-S 
fuzzy model are valid when the system operates in the operational area of interest. Results obtained from LMIs 
are very conservative and consequent section of the T-S can be written only as a linear matrix. This problem can 
be resolved by shifting linear subsystems in the consequent section of rules using polynomial systems. This 
model is called type-I polynomial fuzzy controller. Despite existence of polynomials in subsystems, this fuzzy 
model can model a wider range of nonlinear systems. In the polynomial fuzzy system, the fuzzy controller is 
based on sum of squares(SOS) and polynomial fuzzy modelling is more effective than fuzzy controller based on 
LMI [19]. Consequent section of the polynomial fuzzy model is comprised of polynomial matrix. Therefore, 
stability condition of SOS is more general than stability condition of LMI [20].  

Therefore, polynomial fuzzy systems give more simple measures for analyzing stability and designing 
controllers. Number of local models is generally less than T-S fuzzy systems and SOS design conditions 
consider design methods based on LMI for T-S fuzzy model as a particular case.  
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Error dynamic state feedback fuzzy controllers have dynamics at their output which is determined using a set of 
first order differential equations. This type of fuzzy controllers is used to track reference control and reject 
disturbance.  

In this study, first, Chen master chaotic system and two slave systems are transferred to equivalent polynomial 
fuzzy models. Then, a polynomial fuzzy controller is designed to synchronize master and slave polynomial 
fuzzy models. Polynomial fuzzy controller is designed considering SOS conditions which can be done using 
SOS optimization tool called SOSTOOLS [21].  

Fractional order calculus has been used in many areas including electronics, mechanics, electrical engineering 
[22-25]. Recently, it has been proved that fractional order differential equations are better than integer order for 
modelling many physical phenomena in science and engineering [26]. Fractional order chaotic systems might 
have more useful applications compared to integer order systems. Chaotic behavior has been observed in several 
fractional order systems like Chen [27], Lorenz [28], Lu [29] and Rossler [30]. Synchronization of fractional 
order systems has increased among researchers due to their potential applications [31-34]. Considering previous 
studies, fractional order multi-state synchronization has been considered in a few studies [35]. Considering the 
above discussion, in this paper, polynomial fuzzy modelling and synchronization of multiple fractional order 
multi-scroll Chen systems is considered. According to the previous studies, synchronization of multiple 
fractional order multi-scroll chaotic Chen systems has not been considered.  

The rest of this paper is organized as follows. Section 2 presents model of the integer order system and problem 
formulation. Section 3 describes fractional order chaotic system model and fractional order formulation. Section 
4 presents simulation results. Finally, section 5 concludes the paper.  

2. System Description and Formulating Synchronization of Multiple Integer Oder Chaotic Chen Systems 

A multi-scroll chaotic Chen system is considered as follows: 
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Where 1 2 3, ,x x x  are state variables and a, b, c and d are system parameters. Such that 

35, 3, 28, 8a b c d    . A Chen multi-scroll attractor is shown in Figure 1. 

 
Figure 1. Phase curve of x3,x2 of the Chen multi-scroll chaotic system 

In order to present master and slave synchronization problem, master slave is considered as follows.  
Master chaotic system:  
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First slave chaotic system: 

x3

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Ali Akbar Kekha Javan et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104083 Vol 11 No 4 Aug-Sep 2019 1020



1 2 1 11

2 3 3 1 2 12

3 1 2 3 13

( )

( sin )
s s s

s s s s s

s s s s

x a x x u

x c a x d x x cx u

x x x bx u

  
      
   





(4) 

Second slave chaotic system: 

1 2 1 21

2 3 3 1 2 22

3 1 2 3 23

( )

( sin )
s s s

s s s s s

s s s s

y a x x u

y c a x d x x cx u

y x x bx u

  
      
   





(5) 

where 1 2 3, ,m m mx x x  are state variables of the master chaotic system and 1 2 3, ,s s sx x x  are state variables of 

the first slave chaotic system and 1 2 3, ,s s sy y y  are state variables of the second slave chaotic system. 

11 12 13, ,u u u  and 21 22 23, ,u u u  are control inputs of the first and second slave chaotic systems which should be 

designed to synchronize master and slave systems. 

2.1. Design of Polynomial Fuzzy Control for Synchronizing Integer Order Chaotic Systems  

In this section, design of polynomial fuzzy control is presented for synchronization of master chaotic system (3) 
and slave chaotic systems (4) and (5). In this design, master and slave chaotic systems are transferred to 
equivalent polynomial fuzzy models. Then, a polynomial fuzzy model is designed for synchronization of 
polynomial fuzzy master and slave models which are equivalent to main master and slave chaotic systems.  

A. Polynomial fuzzy model of the chaotic system 

Master chaotic system (3) and slave chaotic systems (4) and (5) can be represented accurately as polynomial 
fuzzy models:  

2

1

( ) ( )m i m i m m
i

x h x A x x


 (6) 

2

1
1

( ) ( )s i s i s s
i

x h x A x x u


  (7) 

2

2
1

( ) ( )s i s i s s
i

y h y A y y u


  (8) 

Where  1 2 3

T

m m m mx x x x  is state vector of the master system,  1 2 3

T

s s s sx x x x  and 

 1 2 3

T

s s s sy y y y are state vectors of the first and second slave systems and 1 2 3[ ]u u u u  is 

the control input. ( )ih x  is the normalized membership degree, ( ) n n
iA x   is system matrix where n is 

dimension of the system equal to3. 
And  
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B. Design of a Polynomial Active Fuzzy Controller  

1 s me x x  and 2 s me y x  are defined and a polynomial fuzzy controller is designed to synchronize 

master chaotic system (3) and slave chaotic systems (4) and (5) as follows:  
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u h x F x e

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Theorem 1. Master chaotic system (3) and slave chaotic systems (4) and (5) can be synchronized using 

polynomial fuzzy controller (7) and (8). If there exists a definite matrix 3*3X R  and polynomial matrices 
3*3( )i mM x R  such that the following conditions are met:  

1( )Tv X I v is SOS (13) 

2( ( ) ( ) )

1,2

T T
i m i mv M x M x I v
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 


(14) 

Where 1  and 2  are small positive values. In this case, feedback gain in (9) and (12) is obtained as follows: 
1( ) ( )i m i mF x M x X  (15) 

Proof. Chaotic system (3) and slave chaotic system (4) are transferred to polynomial fuzzy models (5) and (6). 
Therefore, system error can be defined as follows:  
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Lyapunov function is defined as follows:  
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. Then, derivative of V is obtained as follows:  
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2 2 2

2 2 2
1 1 11 2 2 12 3 3 13

1 1 1

2 2 2
2 2 2

1 1 21 2 2 22 3 3 23
1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

i m i m i m i m i m i m
i i i

i m i m i m i m i m i m
i i i

V h x F x e h x F x e h x F x e

h x F x e h x F x e h x F x e

  

  

   

  



  

  



(22) 

It is assumed that k>0.  
By applying (15) to (22), we have:  
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Inequality (23) is established if (13) and (14) are held. It is assumed that k>0. Since ( )i mF x  in (15) is positive 

definite SOS, 0V   is held.  
3. System Description and Formulating Multi-State Synchronization of Fractional Order Chaotic Chen 

System 

Fractional order chaotic Chen system is represented in (24): 

1 2 1

2 3 3 1 2

3 1 2 3

( )

( sin )

q

q

q

D x a x x

D x c a x d x x cx

D x x x bx

  


    
   (24) 

In which qD is derivative with fractional order of q where (0,1)q  . The system is simulated using 

Graunwald-Letinkov definition of differentiation.Graunwald-Letinkon definition of differentiation is as follows 
[35].  
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If 
t a

n
h


  where a is a real constant describing a limit value and the following can be written: 

0
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lim ( 1) ( )q j

a t qh

q
D f t jh
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 
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In numerical calculation of fractional order derivatives, numerical approximation of qth derivative at kh points 
(k=1,2,…) preserves the following state:  

0

( / ) ( ) ( 1) ( )
k
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q q j

m t k
j

q
k L h D f t h f t j

j



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Using Grunwald-Letinkov definition, a fractional order system can be defined as follows:  

( ) ( , )qD x t f x t (28) 

In order to analyze stability of systems similar to (4), a fractional order expansion of Lyapunov direct method 
has been presented in [36] which is given in Theorem 1.  

Theorem 1. (Fractional order expansion of Lyapunov direct method). Assume that y=0 is a balance point for 
non-autonomous fractional order system. Assume that a Lyapunov function V(t,x(t)) and K-class functions 

( 1,2,3)i i    are held: 

1 1(|| ||) ( , ( )) (|| ||)x V t x t x   (29) 

3( , ( )) (|| ||)q
tD V t x t x (30) 

Where (0,1)q  . Then, system (3) is asymptotically stable.  

Phase curve of fractional order Chen system with q=0.99 is shown in Figure 2.  

 
Figure 2. Phase curve of x2,x3 of the fractional order Chen system 

 
In order to present master and slave synchronization problem, the master system is considered as follows:  
Master chaotic system: 
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First slave chaotic system: 
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Second slave chaotic system: 

1 2 1 21

2 3 3 1 2 22

3 1 2 3 23

( )

( sin )

q
s s s

q
s s s s s

q
s s s s

D y a x x u

D y c a x d x x cx u

D y x x bx u

   


     
   

(33) 

Where 1 2 3, ,m m mx x x  are state variables of the master chaotic system and 1 2 3, ,s s sx x x  are state variables of 

the first slave chaotic system and 1 2 3, ,s s sy y y  are state variables of the second slave chaotic system. 

11 12 13, ,u u u  and 21 22 23, ,u u u  are control inputs of the first and second slave chaotic systems which should be 

designed to synchronize master and slave systems. 
 

3.2. Design of a Polynomial Fuzzy Control for Synchronization of Fractional Order Chaotic System  

In this section, polynomial fuzzy control is designed for synchronization of master chaotic system (31) and slave 
chaotic system (32) and (33). In the following, polynomial fuzzy model of the chaotic system is described.  

A. Polynomial fuzzy model of the chaotic system  

Master chaotic system (31) and slave chaotic systems (32) and (33) can be represented accurately as polynomial 
fuzzy models:  

2

1

( ) ( )q
m i m i m m

i

D x h x A x x


 (34) 

2

1
1

( ) ( )q
s i s i s s

i

D x h x A x x u


  (35) 

2

2
1

( ) ( )q
s i s i s s

i

D y h y A y y u


  (36) 

Where  1 2 3

T

m m m mx x x x  is state vector of the master system,  1 2 3

T

s s s sx x x x  and 

 1 2 3

T

s s s sy y y y are state vectors of the first and second slave systems and 1 2 3[ ]u u u u  is 

the control input. ( )ih x  is the normalized membership degree, ( ) n n
iA x   is system matrix where n is 

dimension of the system which is 3 and its structure is similar to the one described for integer order system.  
 

B. Design of a Polynomial Active Fuzzy Controller 

1 s me x x  and 2 s me y x  are defined and a polynomial fuzzy controller is designed to synchronize 

master chaotic system (31) and slave chaotic systems (32) and (33) as follows:  

1 1 1n fu u u  (37) 

with  
2 2

1
1 1

( ) ( ) ( ) ( )n i s i s s i m i m m
i i

u h x A x x h x A x x
 

    (38) 

2

1
1

( ( ) ( )) 1.f i m i m
i

u h x F x e


   (39) 

2 2 2n fu u u  (40) 

with 
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2 2

2
1 1

( ) ( ) ( ) ( )n i s i s s i m i m m
i i

u h y A y y h x A x x
 

    (41) 

2

2
1

( ( ) ( )) 2.f i m i m
i

u h x F x e


   (42) 

Theorem 2. Master chaotic system (31) and slave chaotic system (32) and (33) can be synchronized using 

polynomial fuzzy controller (37) and (40) if there exists a definite matrix 3*3X R  and polynomial matrices 
3*3( )i mM x R  such that the following conditions are met:  

1( )Tv X I v is SOS (43) 

2( ( ) ( ) )

1,2

T T
i m i mv M x M x I v

is SOS i

 


(44) 

Where 1  and 2  are small positive values. In this case, feedback gain in (9) and (12) is obtained as follows: 
1( ) ( )i m i mF x M x X  (45) 

Proof. Chaotic system (31) and slave chaotic systems (32) and (33) are transferred to polynomial fuzzy models 
(34), (35) and (36). Therefore, system error can be defined as follows: 

1

2
s m

s m

e x x

e y x

 
 

(46) 

2 2

1 1

2 2

1 1

1 ( ) ( ) 1 ( ) ( )

2 ( ) ( ) 2 ( ) ( )

q
s m i s i s s i m i m m

i i

q
s m i s i s s i m i m m

i i

D e x x h x A x x u h x A x x

D e y x h y A y y u h x A x x

 

 

    

    

 

 

 

 
(47) 

Lyapunov function is defined as follows:  
3 3

2 2

1 1

( 1, 2) 1 2i i
i i

V e e P e P e
 

   (48) 

Where 1P X  . Then, derivative of V is obtained as follows:  

11 11 12 12 13 13 21 21 22 22 23 23

2 2

11 1 1 1 1 1 1 11
1 1

2 2

12 2 2 2 2 2 2 12
1 1

13 3 3

( ) ( ) ( )

([ ( ) ( ) ] ( ) ( ) ] )

([ ( ) ( ) ] ( ) ( ) ] )

([ ( ) ( )

q q q q q q

i s i s s i m i m m
i i

i s i s s i m i m m
i i

i s i s

V e e D e e D e e D e e D e e D e e D e

e h x A x x h x A x x u

e h x A x x h x A x x u

e h x A x x

 

 

      

  

  

 

 



2 2

3 3 3 3 13
1 1

2 2

21 1 1 1 1 1 1 21
1 1

2 2

22 2 2 2 2 2 2 22
1 1

2

23 3 3 3 3 3 3
1

] ( ) ( ) ] )

([ ( ) ( ) ] ( ) ( ) ] )

([ ( ) ( ) ] ( ) ( ) ] )

([ ( ) ( ) ] ( ) ( )

s i m i m m
i i

i s i s s i m i m m
i i

i s i s s i m i m m
i i

i s i s s i m i m m
i

h x A x x u

e h y A y y h x A x x u

e h y A y y h x A x x u

e h y A y y h x A x x

 

 

 



  

  

  



 

 

 


2

23
1

] )
i

u




(49) 

If  

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Ali Akbar Kekha Javan et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104083 Vol 11 No 4 Aug-Sep 2019 1027



2 2

11 1 1 1 1 1 1 11
1 1

2 2

12 2 2 2 2 2 2 12
1 1

2 2

13 3 3 3 3 3 3 13
1 1

2

21 1 1 1 1
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

i s i s s i m i m m f
i i

i s i s s i m i m m f
i i

i s i s s i m i m m f
i i

i s i s s i m
i

u h x A x x h x A x x u

u h x A x x h x A x x u

u h x A x x h x A x x u

u h y A y y h x

 

 

 



   

   

   

  

 

 

 


2

1 1 21
1

2 2

22 2 2 2 2 2 2 22
1 1

2 2

23 3 3 3 3 3 3 23
1 1

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i m m f
i

i s i s s i m i m m f
i i

i s i s s i m i m m f
i i

A x x u

u h y A y y h x A x x u

u h y A y y h x A x x u



 

 



   

   



 

 

(50) 

Then 

11 11 12 12 13 13 21 21 22 22 23 23f f f f f fV e u e u e u e u e u e u      (51) 

By substituting uf, we have: 
2 2 2

2 2 2
1 1 11 2 2 12 3 3 13

1 1 1

2 2 2
2 2 2

1 1 21 2 2 22 3 3 23
1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

i m i m i m i m i m i m
i i i

i m i m i m i m i m i m
i i i

V h x F x e h x F x e h x F x e

h x F x e h x F x e h x F x e

  

  

   

  



  

  



(52) 

It is assumed that k>0.  
By applying (45) to (52), we have:  

( ( ) ) ( ( ) ) 0

( ) ( ) 0, 1,2,3

T
i m i m

T
i m i m

PM x P P M x P

M x M x i

   

   
(53) 

Inequality (53) is established if (43) and (44) are held. It is assumed that k>0. Since ( )i mF x  in (45) is positive 

definite SOS, 0V   is held. 

4. Simulation and Results 

4.1. Simulation of Integer Order  

In numerical simulations, initial condition of the master system is 1 2 3( (0), (0), (0)) ( 9, 5,14)m m mx x x    , 

first slave system is 1 2 3( (0), (0), (0)) (2,7, 10)s s sx x x    and second slave system is 

1 2 3( (0), (0), (0)) ( 5, 3,3)s s sy y y    . Total simulation time is 6s and time step is 0.001s. Figures 3-5 and 6-

8 show synchronization between states of master and first slave system and synchronization between master and 
second slave system. Figures 9 and 10 show synchronization error between master and first slave system and 
master and second slave system, respectively. 
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Figure 3. Time curve of 1 1( , )m sx x of systems (3) and (4) 

 

Figure 4. Time curve of 2 2( , )m sx x of systems (3) and (4) 

 
Figure 5. Time curve of 3 3( , )m sx x of systems (3) and (4) 
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Figure 6. Time curve of 1 1( , )m sx y of systems (3) and (4) 

 

Figure 7. Time curve of 2 2( , )m sx y of systems (3) and (4) 

 

Figure 8. Time curve of 3 3( , )m sx y of systems (3) and (4) 
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Figure 9. Synchronization error curve between two systems (3) and (4) 

 
Figure 10. Synchronization error curve between two systems (3) and (4) 

It can be seen that synchronization errors converge to zero fast. It is also seen that synchronization is done in 
0.3s.  
 

4.2. Synchronization of Multiple Multi-Scroll Chaotic Chen Systemsusing Fractional Order Polynomial 
Fuzzy Model  

In this case, fractional order value of the master and the first slave system and the second slave system is 0.97 
and 0.94, respectively. Initial condition and parameters are similar to the integer order model. Time step is 
0.001. Simulation is performed for synchronization of multiple systems. Figures 11-13 show synchronization of 
the master and the first slave system and figures 14-16 shows synchronization of the master and the second 
slave system. Synchronization error for these two cases is shown in Figures 17 and 18.  
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Figure 11. Time curve of 1 1( , )m sx x of systems (27) and (28) 

 

Figure 12. Time curve of 2 2( , )m sx x of systems (27) and (28) 

 

Figure 13. Time curve of 3 3( , )m sx x of systems (27) and (28) 
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Figure 14. Time curve of 1 1( , )m sx y of systems (27) and (28) 

 

Figure 15. Time curve of 2 2( , )m sx y of systems (27) and (28) 

 

Figure 16. Time curve of 3 3( , )m sx y of systems (27) and (28) 
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Figure 17. Synchronization error curve between two systems (27) and (28) 

 
Figure 18. Synchronization error curve between two systems (27) and (28) 

 

According to Figures 17 and 18, it is seen that errors have converged to zero fast. Table 1 compares the time 
taken for the error to reach 0.05.  

Table 1. Comparing convergence time of integer order and fractional order chaotic systems 

States/ Convergence time  e11 e12  e13 e21 e22 e23 

Integer order  0.300  0.307  0.344  0.288  0.256  0.313  

Fractional order  0.252  0.263  0.305  0.237  0.203  0.264  

It can be seen from Table 1 that convergence time in fractional order mode is reduced compared to the integer 
order mode. It is seen in simulations that if time step of the integer order chaotic system is dt=0.01, the system 
tends to infinity and becomes unstable. This is also checked for the fractional order chaotic system and the result 
indicates that the system does not become unstable.  

5. Conclusion 

In this paper, a polynomial fuzzy control design strategy is presented for synchronization of multi-scroll 
fractional order and integer order Chen chaotic systems. Polynomial fuzzy systems can model a wider range of 
nonlinear systems. Fractional order systems can offer a more accurate model compared to integer order systems. 
Using SOS tools, stability of the system is investigated and feedback gains of the polynomial fuzzy controller 
are obtained. Simulations are performed for fractional order and integer order systems. Results show that the 
proposed scheme has synchronized two fractional order chaotic Chen systems using fuzzy control for two 
integer order and polynomial fractional order systems with a high speed. In future studies, intelligent 
optimization algorithms can be used to adjust parameters of the polynomial fuzzy controller such that 
synchronization error and convergence time are reduced. 

 

e
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