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Abstract 

Wireless sensor networks (WSNs) in the dynamic system have various limitations, of which the limitation of 
using and supplying of energy, bandwidth limitation of wireless communication links among the nodes can be 
cited. In spite of the various applications of these networks and the efforts made to eliminate the raised 
constraints, the challenges still survive, The ARO optimization method which is responsible for the dynamic 
clustering of the system is used in this study. Then, according to fuzzy algorithm, it performs optimal routing 
between the clusters. In the new proposed method here, F_WU_ARO wireless sensor network is defined as 200 
sensors, distributed uniformly and randomly in a square-shaped area with an area of 100 square meters. 
Moreover, each cluster-head (CH) has the address or the location of its neighboring clusters and can send the 
relevant data if needed. In the proposed hybrid method of F_WU_ARO, with its used parameters, the residual 
energy based on the death of the first, middle, and last network sensors showed an improvement in the level of 
system sustainability in comparison to F_WU_PSO algorithm at the values of 1.5, 3, and 5 percent, respectively. 
In addition, it showed a reduction in the time spent with the amount of 0.14 (based on the minute). 
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Introduction 

Meta-heuristic optimization techniques have attracted great attention in solving complex optimization problems 
in recent years. They are stronger than traditional methods relative to the traditional method based on formal 
logic or math planning for many real-world applications. These techniques have been obviously developed and 
new ideas have been developed in optimization algorithms over the past decades. 

Since many of the real-world optimization problems are becoming more complex, better optimization 
algorithms are required to select the best solution among a variety of candidate solutions for each problem. The 
purpose of using WSNs is to collect data from the surrounding environment and to send them to the well. The 
lack of delay of sent and a received packet, which is one of the most critical problems in the networks, have 
caused proposing several methods and algorithms for transferring information from sensor nodes to the well. 

The data collected in WSNs are usually sent by node-to-node propagation and or multi-step propagation to a 
fixed control center called well [1, 2]. With the release of the collected data, significant energy is consumed 
from the sensor nodes. Thus, a distributed routing protocol is needed to disseminate information to the well in 
each sensor node. However, the timely and efficient mobility of the well in the network survey and the absence 
of problems in the routing and location of the wells are of great importance. In case of a delay or meeting of 
wells with sensor nodes in some areas before the completion of data transfer, loss of information occurs. [3]. 

Since examining the parameters of efficient routing algorithms are examined, e.g., parameters such as battery 
life, computing capability, storage and processing of sensor data are the challenges in this regard. Thus, one of 
the challenges is how to reduce energy consumption while increasing the network life span. 

The study used a new individual-based optimization algorithm, inspired by a famous asexual reproduction 
optimization as a significant biological phenomenon called ARO. ARO can be considered essentially as an 
evolution-based algorithm that mathematically models the germination mechanism of ARO. 

This study takes advantage of ARO algorithm to propose a kind of clustering suitable and applicable for 
dynamic and variable environments, To achieve the goal it is tried to cluster dynamic data using the methods of 
dealing with dynamic environments and to update the clustering at any given time, and to apply local changes to 
clustering. 
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In the proposed new approach in this study, F_WU_ARO, CH has its own neighbors’ address and location and 
can send the relevant data if needed. Moreover, it is assumed that the clusters do not overlap, meaning that when 
the well is in the radio range of a cluster (CH), it is not in another cluster’s radio range. The purpose of the study 
is to provide a new and effective approach to overcome the energy consumption challenge, which is very 
inexpensive and simple. 

Research background 

Data clustering is a kind of NP problems. Finding a solution to NP problems is very difficult. Algorithms such 
as swarm intelligence algorithms have partly solved this problem. By these types of algorithms, some solutions 
are found that are approximate to the answer. 

PSO was proposed by Kennedy Kennedy and Eber-hart in 1995 [9, 10], presented for clustering problems and 
unlike K- means, they had a better performance. 

OmranAL-sharban and Baribones have used PSO for the image-clustering problem. Wong et al. presented an 
improved version of the objective function, firstly proposed by Omranetal [11]. In addition to Hancer, PSO et al. 
developed an artificial bee colony based on developed MRI images with a predetermined objective function 
based on the method of brain tumor segmentation [12] and [13]. 

Ozturk et al. have improved a new and satisfying objective function and clustered well separated and 
interconnected. Moreover, ant colony optimization (ACO) was used for the clustering problem. It is clear that 
the number of clusters cannot be easily identified in many real-world applications and datasets [14].  

Thus, the mentioned algorithms that need the number of clusters as a parameter cannot be effectively used. To 
understand this, the optimal number of clusters in a dataset and converting to a research area is important. It was 
proposed by Ball and Hall [15] that ISODATA splits or integrates clusters throughout the program based on the 
specific criteria to increase or decrease the number of clusters. 

However, ISODATA asks the user to specify the values of different parameters (e.g., merging and splitting 
thresholds) and can merge only two clusters under the specific threshold of a user [16]. Dynamic optimal 
cluster-seek dynamic search (DYNOC) is similar to ISODATA, based on maximizing the minimum distance 
from the cluster to the maximum distance within the cluster, but it needs to be specified by the user. 

Snob [17] and Wallace's program is for unobserved classification that decided the best data classification to 
assign things to a cluster using the minimum principles [message or description] and length [encoding] (MMD 
or MML). 

Evolution-based algorithms have been used for the dynamic clustering problem, especially in the past decade 
[18]. Omranet proposed a PSO based dynamic clustering PSO (Dcpso) inspired by the ideas of Kuncheva and 
Bezdek [18]. In Dcpso, a cluster set (s) was created for the first time, and then a binary PSO was used to select s 
cluster centers. Then the, cluster centers of s were obtained in the best solution defined by K-means. 

Das et al. [19] and [20] proposed differential-evolution-based algorithms (ACDE, AFDE) where the parameters 
of the F scale and the intersection rate are adaptively determined. 

In ACDE, each solution is shown by cluster centers and associated activation values [1 and 0]. 

Cluster centers and their activators are updated simultaneously through evaluation. Thus, it is not necessary to 
use K-means to reduce the effects of initial conditions, such as in Dcpso. 

Kuo et al. [21] improved a hybrid PSO & GA algorithm to overcome the convergence problem of the PSO 
algorithm. However, based on the only Euclidean distance that is not very suitable for the dynamic clustering 
problem, the objective matching function is used. 

Maulik and Saha [22] proposed a modified differential evolutionary clustering algorithm based on the best local 
and global situation data (MODEAFC) that automatically extract information from remote sensing images. 

Rui et al., DE and PSO, have been used for pair and duplicate, respectively, and a comparative study on 
clustering validity indices has been presented [23]. 

Proposed method 

Figure 1 shows the proposed method. In the proposed method, based on the combination of three powerful fuzzy 
algorithms, it is energy-aware and buffer with clustering based on the ARO algorithm. It is to find the least 
distance traversed in the algorithm is by measuring the distance of CHs and mobile nodes and satellites as well 
as the energy level of each node in the trajectory. 
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Figure 1: The proposed method algorithm F_WU_ARO 

In the proposed method, it is assumed that sensor nodes are constant and equipped with a GPS device that 
locates its geographical location. We have a central well and the network is clustered and each cluster has a CH 
and mobile nodes. 

Sensors with data ready to be sent will send it to the CH and the cluster will send the data to its neighbors. 

The method is based on the fuzzy algorithm, so that the well route and the nodes information and packet are 
transmitted by creating a learned rule from their previous mobility of the packets to implement the above 
method using the distance traveled (the number of nodes seen as well as CH energy and the number of empty 
buffers), using a fuzzy method to get the best node among the routes selected above. 

In the fuzzy system designed for the proposed method, there are nine rules for the fuzzy inference. The rules are 
given in Table (1). 
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Table 1: The rules used in fuzzy section 

Chan Density Center Distance Energy  

Very_large High Low Low far 1 

Large Med Low Low Far 2 

Large_low Low Low Low Far 3 

Very low Low High High Low 4 

Little_med Med Med Med Med 5 

Little_low Med Med High Med 6 

Low Low Low Low Low 7 

Large High Low Med far 8 

Large_low Med Med High far 9 

A WSN has been defined with 200 sensors randomly distributed in a square-shaped with a 100-meter wide area. 
All of the initial parameters and their values are given in Table (2) for the network definition. 

Table 2: The parameters used 

Parameter  Value  

Cluster number 4 

Number of nodes 200 

Number of satellites 3 

Network range [100 100] 

Well interval [50 50] 

Node awaking energy 0.1% 

Number of mobile nodes 5 

Message length 8 

Duration of the move 20 

Landa queue (landa_que) 2 ^ 5 

Miou Queue (mue_que) 5 

Buffer 10 

Results 

The results of the comparison of the basic methods and the proposed method, including nodes distribution 
diagram, node death drawing diagram, the first node death in the fuzzy algorithm, half death, and the end of 
death are studied. As is seen from the figures, diagrams and Table 3, one can understand that in the proposed 
method F_WU_ARO, with the parameters used, the residual energy based on the death of the first, middle, and 
last network sensors showed an improvement in the level of system sustainability in comparison to F_WU_PSO 
algorithm at the values of 1.5, 3, and 5 percent, respectively. In addition, it showed a reduction in the time spent 
to the amount of 0.14 (based on the minute). 

However, these improvements have occurred while the total number of packets has been at its peak, which 
means that the network has been tested at its worst state and has reached the results and improvements reported. 
Although there is no change in the number of interference packets, the time elapsed (based on the minute) has 
decreased significantly. 
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Figure 2: Results of the PSO method: A) Node distribution diagram, B) Diagram of the first node death, C) The first node death the in the 
fuzzy algorithm, D) Half death, E) The end of death 
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Figure 3: Results of ARO method: A) Nodes distribution diagram, B) Diagram of the first node death, C) The first node death the in the 
fuzzy algorithm, D) Half death, E) The end of death 
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Table 3: Comparison of Simulated Models 

 

Model

 

Parameter 

fuzzy + wakeup Priority 

+ Buffer + PSO 

fuzzy + wakeup Priority 

+Buffer  +ARO 

Total number of clusters 46 35 

Residual energy based on the 
death of the first network sensor 

950 Energy Remained %(5.5) 960Energy Remained %(3.8) 

Residual energy based on the 
death of the middle network 

sensor 
973 Energy Remained %(3.8) 993Energy Remained %(2.7) 

Residual energy based on the 
death of the last network sensor 

996 Energy Remained %(0.35) 996 Energy Remained %(0.3) 

Number of he sent packets 890 996 

The number of received packets  865 992 

Time elapsed (in minutes) 0.219497 0.189497 

Conclusion 

One of the most significant parameters is the use of these networks for monitoring and controlling sensor nodes, 
so that it reduces energy consumption and at the same time sends packets without losing information and at the 
fastest time. In traditional routing, the constant well node and certain sensor nodes near the wells have the role 
of relay the data of most network segments. Thus, heavy traffic volume and high-energy consumption and 
battery drain lead to a quick disconnection on the network in a short time.  

In this study, the ARO optimization method is used, which is responsible for the dynamic clustering of the 
system. Then, it performed optimal routing between the clusters according to the fuzzy algorithm. Among the 
advantages of the proposed method are eliminating any additional costs on the network and that in the proposed 
network, the failure of a part of the network does not lead to the failure of any part of the network other than that 
part besides it is considerably inexpensive and simple to implement due to its software-based method.  

The study combined three methods based on the combination of fuzzy, energy aware, and buffer algorithms - 
F_WU_ARO - not requiring any additional costs in the network.  

In the proposed hybrid method, F_WU_ARO, with the used parameters, the residual energy based on the death 
of the first, middle, and last network sensors showed improvement relative to the F_WU_PSO algorithm and the 
time spent (based on the minute) reduced drastically. However, these improvements have occurred when the 
total number of sent packets has been at its peak, meaning the network has been tested at its worst state and has 
reached the results and improvements reported. Although there is no change in the number of interference 
packets, the time elapsed (based on the minute) has significantly reduced. Moreover, there is no additional 
network cost in the proposed method. Additionally, the failure of a part of the network does not lead to the 
failure of any part of the network other than that part. In addition, given the software nature of the proposed new 
method, the implementation cost is very low and simple in terms of computational complexity. 
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