ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Cloud Computing Load Balancing using
Genetic and Throttled Hybrid Algorithm

Shymaa G. Eladl # Nesreen L. Ziedan, Tamer S. Gaafar™

Computer and Systems Engineering Department, Faculty of Engineering Zagazig University, Egypt.
! eng.sheladl@gmail.com
? ziedan@outlook.com
3
tamer_samy gaafar@yahoo.com

Abstract— The demand for cloud computing resources is increasing due to its accessibility everywhere
at any time. When the number of clients for cloud services increases, the load on the cloud nodes becomes
high. This status requires load balancing to evenly distribute client requests among the available Virtual
Machines (VMs) in a Data Center (DC). There are different standard dynamic load balancing techniques,
such as Throttled and Active Monitoring. In this paper, a Genetic Algorithm (GA) is incorporated with a
throttled to improve load balancing. The improvement is achieved by enhancing the overall response
time, the data center processing time, and the maximum resource utilization. Simulation results show the
improved performance of the proposed method compared to the ESCE and Throttled.

Keyword - Cloud Computing, Load Balancing, Genetic Algorithm, Cloud Analyst
I. INTRODUCTION

Cloud computing technology has seen a speedy growth in recent years. It has affected the growth in several
sub-technologies, like storage, distributed networks, virtualization, participation, and connectivity. In [1, 2], a
cloud is considered as a distributed system that can handle diverse resource requirements by users. The rule
system of a cloud-user relationship is planned by the Service Level Agreement (SLA), which is an agreement
between a user and a service provider. As indicated in[3], the physical structure and repairing system can be
achieved by the cloud, not the user. This automatically decreases the total cost and increases system efficiency.
As indicated in [4], cloud computing gives an easy way to hold data and files, and it includes the following
features: virtualization, distributed computing, and web services. Any complex task that calls for enormous
computational resources can be serviced by cloud computing using distributed resources in a decentralized style
(5]

Although cloud computing has many countenances, there are obstacles as load balancing over the resources
and task scheduling [6]. Task scheduling in a cloud environment is a problem of specifying tasks to an
appropriate machine to finish their work. A task should be done within a given period. The cloud task scheduler
restores the information from the cloud service manager about the case of available resources [7]. Therefore, the
scheduling of task problem can be qualified as the method of finding out a model mapping for execution of user
tasks with the aim of reaching the desired goals [8]. Algorithms of task scheduling in cloud computing can be
done depending on diverse objectives such as balancing the load, minimizing waiting time, and maximizing the
utilization of resources and the throughput of the full system. Therefore, an efficient task scheduling algorithm
aims to balance diverse and conflicting parameters together at the same time[9]. Moreover, resources are not
utilized efficiently due to the rise in the load so for that reason load balancing is required [10].

Load balancing is the approach of redistributing the whole load into separate nodes to guarantee that no node
is overloaded, doing very little work, or idle [11]. Load balancing qualifies network resources for best response
and performance and provides high gratifications to consumer [12]. As a result, providing effective load
balancing techniques is key to the success of cloud computing [6]. Balancing became one of the necessary
interest in cloud computing since it is not possible to predict the requests number that is rolled at each second.
The inability to predict is due to changing the behavior of the cloud. Therefore, load balancing algorithms can
be classified depending on the system state as static and dynamic [13, 14].

Dynamic load balancing works depending on the dynamic changes in the status of the node, i.e., it gathers,
keeps and analyzes data about the entire system status. If some node has missed, it will not halt the work of the
entire network, but it will affect the system performance. Some of the dynamic algorithms are Ant Colony
Optimization (ACO), Honey Bee Foraging, Genetic Algorithm (GA) Active Monitoring, and Throttled.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 606

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

This paper introduces an improvement to load balancing. A Load Balancing algorithm is proposed to
improve Load Balancing in a heterogeneous cloud computing environment through improving the overall
response time, DC Processing Time, and the maximum resource utilization. The proposed algorithm
incorporates a GA with a throttled, and it is called Dynamic Throttled Genetic Algorithm (DTG).

Il. RELATEDWORK
This section provides an overview of some load balancing techniques in cloud computing.
The performance of a load balancing algorithm in cloud computing is measured by the following metrics:
Execution Time (ExT): It is the time taken to execute the given set of tasks on VM, which is defined by [15]
as shown in Eq. (1):
ExT =LT/VMP (1)
Where VMP is the power processing of VM, LT is the length of the task.

Makespan: It is defined as the total execution time of all the tasks. This metric must be reduced to reduce the
cost and execution time. It is the total amount of time required to complete a group of tasks which indicates the
maximum completion time. It can be calculated by [15-17]

Makespan =)~ Executiontime(Tasks;))
Makespan = Max (Comp_Time [i, j]) 3)
{I<I<N,1<j<M}
Where, Comp_Time [i, j] is the time at which task i ends on VM j.

Completion Time (CT): It is the sum of the Execution Time (ExXT) of all the previous tasks and execution
time (ExTm) of the present task allocated in the same VM, which can be calculated by [15] as shown in Eq. (4):

CT=ExTm+Y "1 ExT 4
Response Time (RT): It represents the total amount of time taken by the load balancing algorithms to respond
to a user. This metric must be reduced and can be calculated by [15] as shown in Eq. (5):

Where, CT is the completion time of a task, SB is the submission time of task. The average of response time for
each VM is calculated by[15] as shown in Eq. (6):
Avg RT=RT/N 6)

Garg, Gupta, and Dwivedi proposed an Enhanced Active Monitoring Load Balancing (EAMLB) method to
reduce the response time in cloud environments. EAMLB got a better response time than active monitoring and
Round Robin (RR). Cloud analyst is used in the comparison between active monitoring, RR and proposed
algorithm (EAMLB). Results showed the benefit that one VM will not be assigned in a continuous manner if it
is the least loaded [18]. Kulkarni and Annappa suggested an algorithm that spreads the load equally throughout
all the VMs even when the frequency of requests is high during peak hours. This approach aims at guaranteeing
faster response times to consumers. It is observed that the active load balancer algorithm (packaged in cloud
analyst) produced load imbalance. The suggested algorithm repaired the problem of the active balancer
algorithm by using a reservation table among the phase of the chosen and assignment of VMs[19].

Shakir and Razzaque discussed some load balancing algorithms and the simulation was performed using the
cloud analyst tool to test the performance. The result showed that RR is the best compared to the others
[20].Nishad, Kumar, Bola, Beniwal, and Pareek suggested RR policy. The RR policy was worked effectively
when it concerned with resource utilization. The total cost was the same in experimentation when compared
with a traditional algorithm such as Compare and Balance, VectorDot, and Throttled. The choice of a suitable
DC for carrying out a task is an important advantage to develop the performance of the cloud [21].

Das, George, and Jaya introduced A new algorithm by merging Weighted Round Robin (WRR) in
Honeybee inspired algorithm with a view to obtain the least processing and response time. Where tasks with a
priority are processed first. The honeybee algorithm allocated weights to each VM, and the VM is chosen
according to the task requirement from resources. Tasks with no priority are processed later using WRR.
Experimental results showed that the proposed algorithm gives better response and processing time
[22].Makasarwala and Hazari suggested a GA based technique for load balancing. For population initialization,
the priority request is taken into account according to their time. The idea from the priority is to obtain actual
world visualization. The proposed technique is done using cloud analyst. Results showed that the suggested
technique performs better than RR and throttled. The suggested technique also gives better average response
time compared with previously available techniques[23].

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 607

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Rjoub and Bentahar proposed a machine learning algorithm by using a multi-standard decision to get better
performance. The main goal of their work is to reduce the Makespan of a given task. Their technique was
simulated by the cloud sim toolkit package. Experiment results showed that the proposed algorithm reduced the
execution time and got better performance of the load balancing [24].Sadia, Jahan, Rawshan, Jeba, and Bhuiyan
proposed a new strategy that carried out the division of loads through VM that relies on priority. Their aim was
to maximize the throughput with minimum execution time. To achieve that, the VMs were arranged based on
their processing powers, and tasks are allocated to the VMs that rely on their instruction numbers and priorities.
The proposed strategy was tested using cloud Sim, and the results proved that the performance of their strategy
is better than other conventional algorithms [25].

Aruna, Bhanu, and Karthik proposed a load balancing technique using a Joint Firefly algorithm (FA) and
Particle Swarm Optimization (PSO). The main goal was to balance the load of the entire system while at the
same time minimize the makespan of tasks. This strategy has been simulated with cloud sim toolkit package.
The results proved that the proposed algorithm gave better performance than the Min—Min, PSO, and FCFS
methods [26]. Jena proposed a method that focused on task scheduling using a Multi-Objective nested Particle
Swarm Optimization (MOPSO) to make the best of energy and processing time. The result was obtained from
cloud sim and was compared with BRS and Random Scheduling Algorithm (RSA). MOPSO gave an ideal
balance results for multiple objectives and helped in reducing the number of failed tasks. MOPSO reduced 30%
of energy consumption and 25% of makespan compared with other approaches [27].

Garg, Dwivedi, and Chauhan proposed a method that focuses on load balancing to decrease the status of
overload or underload that leads to getting better performance of cloud on VMs. Comparative analysis was done
using cloud analyst. The STVMLB is prepared by making an alteration in the concept of throttled algorithm.
STVMLB has raised the utilization of VM better than throttled and active monitoring. It achieved a better result
as to efficiently assign the coming request and increase the response time in a cloud environment, although the
response time was not better than a throttled algorithm [28].Domanaland Reddy suggested a hybrid algorithm
gathering the methodology of divide-and-conquer and throttled algorithms known as DCBT. The goal was to
minimize the total execution time and maximize resource utilization. The result proved that DCBT made use of
the VMs more effectively while bringing down the execution time of the tasks by 9.972% compared to the
modified throttled technique[29].

Geethu, Vasudevan, nd International Symposium on Big, and Cloud Computing Challenges focused on Min-
Min and Max-Min load balancing algorithms. Comparison between Min-Min and Max-Min algorithms showed
that makespan is reduced for Max-Min compared with Min-Min, so the Max-Min outperformed the Min-Min
[30]. Babu, Joy, and Samuel suggested a bee colony for effective load balancing, which relies on the foraging
style of honey bees. Tasks taken away from overloaded VMs were considered as honey bees, and underloaded
VMs were considered as the food sources. The suggested method considered the priorities of tasks in the
waiting queues and attempted to obtain less response time and decrease the number of task migrations. The
experimental result showed a reduction in the makespan and gave better performance to the consumers [31].

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 608

ISSN (Print)

:2319-8613

ISSN (Online) : 0975-4024

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Tablel. Summary of the reviewed state-of-the-art

References Algorithm Main objective Metrics Compared Advantages
Algorithms
Allocate the task Minimize the Honeybee Enhanced honeybee
Enhanced .) .) —
Honeybee according to their response time, Inspired Load inspired load
) priority, resource minimize Balancing balancing algorithm
[32](2017) | Inspired Load . . leorith . ves |
Balancing requ1rerpent and by processing time Algorithm using gives less response
) calculating the and balance the cloud analyst. time and processing
Algorithm . .
computing power. load. time.
Calculating the Minimum RR, Throttled Throttled give a better
Round Robin, | performance of load response time and | and Equally performance than the
Throttled and | balancing techniques. | minimize VM Spread Current others, as it uses a
[33](2016) Equally Cost. Execution using threshold and
Spread cloud analyst. accessible VM list for
Current forbidding serve the
Execution load by overloaded
VMs.
Allocate the incoming | Minimize RR, Active A suggested algorithm
Modified request to the response time Monitoring and does better than the
[34](2016) Active obtainable VMs Throttled using other three algorithms
Monitoring wisely rely on their cloud analyst. on the base of
Load Balancer | priority, state and response time.
memory utilization.
To develop the entire Minimize RR, Throttled This algorithm is
response times of response time. using cloud highly appropriate
[35](2016) Ant Colony services in the cloud. analyst. with the manner of a
Optimization distributed network
and raises the
algorithm robustness.
A The suggested Minimizing the First Come First Suggested algorithm
combination algorithm attempted to | makespan and Serve (FCFY), better than the others,
of a GA and reduce the makespan improve the Stochastic Hill improved the response
[36](2015) | gravitational as well as possible system load. Climbing (SHC), | time and ensure the
emulation decrease the number GA and ACO quality of service
local search of VMs who are going using cloud (QoS) requirement to
(GEL) to lose their deadlines. analyst. the user.
Dvnamic Comparison of three Improve response | Modified PSO is more effective
Lc};a d dynamic load time, processing throttled, FCFS as it has lower
[37](2015) . balancing algorithms time, performance | and PSO using response time and
Balancing . -
) relies on their and Cost. cloud analyst. cost.
Algorithms
performance.
. STVMLB is prepared | Maximize the Throttled, RR STVMLB get better
Synchronized i 1 . d Acti lizati "
Throttled by working alteration | resources and Active utilization of VMs
in the notion of utilization and Monitoring using | rather than active
[28](2015) | Load S o
. throttled to develop minimize average | cloud analyst. monitoring and
Balancing . .
) the performance of response time. throttled algorithms.
Algorithm
cloud.
An algorithm has been | Minimize VM Assign It allocates the load
suggested for processing time, Algorithm using between VMs
allocation of the whole | response time and | cloud analyst. effectively with
Dynamic coming request total cost. amended time in
[38](2015) Load efficiently between the comparison with the
Management VMs. other algorithms.
Algorithm Also, it has a

minimum response
time and suitable
resource utilization.

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

609

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

I11. METHODOLOGY
A. Problem Statement and Definition

When requests come from users randomly, some servers could undergo a heavy workload while others are
sleeping or have a light load. Due to the unfair distribution of load in the cloud, the cloud DC may be influenced
by overloading and underloading of VMs. When servers are equally loaded, the performance will improve. The
proposed algorithm aims to avoid these unfair distributions of the load through the VMs by distributing the load
among the VMs in an appropriate manner. Therefore, a new efficient scheduling algorithm is suggested and
then implemented in cloud computing using cloud analyst, in Java language. The proposed algorithm is a hybrid
approach that combines GA and throttled strategies, and it is called Dynamic Throttled Genetic (DTG).

The efficient allocation of resources and scheduling is a vital task in cloud computing based on which the
performance of the system is rated. In general, algorithms of load balancing are multi-objective to guarantee the
maximum use of all resources along with the enhancement in response time, throughput, makespan and, cost.
Optimization is picking out the best solution. Any optimization case is either maximization or minimization,
which depends on the nature of the problem [39].

In existing throttled, when a request comes from a client to the Data Center Controller (DCC) and wants to
be allocated to a VM, then the accessibility of VM is examined starting from the first VM. However, it is better
that the accessibility checking starts from the next to be assigned VM for load balancing. Moreover, existing
throttled does not take into account the processing times for each individual requests [12, 13, 28].To overcome
this problem, a GA is incorporated with a Throttled to improve load balancing.

GA can have a key role in load balancing. It can handle the scheduling mechanism in which the requests are
allocated to resources. This determines which resource will be appropriate for which task. Moreover, GA can be
used to decrease the scheduling time. The concept of GA is that the new generation of a solution should be
better compared to the previous one. A solution is represented by a chromosome [40].

GA is a nature-inspired algorithm which relies on the ‘existence of the fittest’ idea. GA is used as an
optimization process in diverse applications due to its ability to locate the global maximum in several different
modes. It converges progressively in respect of a global optimum solution according to the target function,
which is one of the most significant countenances of any optimization algorithm. According to its many features
such as robustness and adaptability, it has acquired popularity to resolve the optimization issues, particularly in
mysterious environments. GA can be used to find the most suitable processors to carry out the specified set of
tasks for improving response time, resource utilization, etc. Generally, GA consists of a four-steps, which are
selection, crossover, mutation, and termination [23].

The basic process for GA is as follows [41]:

L Initialization: Creates an initial population. This population is usually randomly generated and can be
any desired size.
II. Evaluation: Calculates 'fitness' for each chromosome. The fitness value is calculated by how well it fits
with the desired requirements.
I11. Selection: Selection works by throwing the weak and preserving the best chromosome in the
population (good solutions are chosen).
IVv. Crossover: Creates new offspring, which will inherit the best feature from its parents (crossover the
parent’s to build new offspring).
V. Mutation: Makes very little alterations at random to chromosomes. Every combination of solutions one
can inspire would be in the initial population (changing the gene estimate in the chromosome).
VL Termination: The GA can be restarted until it reaches a stop condition.
Some concepts used with GA are as follows[36]:
L Fitness Function: It is a type of an objective function, which is used to represent how close the solution
is getting to the set target. The fitness function of the chromosome in DTG is the min cost.
1L Population: It is a set of possible solutions for the proposed problem (in DTG a collection of
chromosomes represented in all available VMs).
I11. Chromosome: It represents the individuals in the population (one solution which consists of genes).
IV. Gene: It represents a variable in a chromosome.

B. Architecture of the Dynamic Throttled Genetic (DTG) Methodology

The proposed DTG algorithm concentrates mostly on how incoming cloudlet requests are assigned to the
appropriate VMs intelligently. The purpose of this proposed load balancer algorithm is to design efficient
scheduling that uniformly divides the workload among the available VMs, decreases the overall response time
and DC processing time to improve the resource utilization. This can be considered as an optimization problem.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 610

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

An index schedule is used to keep the VM-id and its condition either AVAILABLE or BUSY. At the start, all
VMs are available. At any moment, when a new request comes from the client to the DCC, the DCC forwards
the request to the proposed load balancer and asks for request assigning. The proposed DTG load balancer
checks all the available VM in the index schedule. Throttled returns all the available VMs-id to the GA. GA
considers all the available VMs as an initial population and begins to evaluate every chromosome fitness cost.

Decimal numbers are used for genes representation. The chromosome presentation used in the proposed
method is as follows:

A={12345678}
The digit represents the (VM_ID) and the place at which it is located is Cloudlet ID (C_ID).

The fitness function is the base part of the evolution of the algorithm. The chromosomes having good fitness
is selected for generating a child. The fitness function used in the proposed algorithm is based on choosing the
chromosome with minimum cost. The less the value of fitness function, the more chromosomes are fit.

The initial population is created randomly so the size of the available resources should be known. If there are
two available resources and a new request coming, there are two solutions. In that case, the proposed DTG will
compute the expected cost of the two available resources. It will take the resource that has a minimum cost,
where the min cost on VM idl and min cost on VM id2 are arranged in list index. The number of
chromosomes is a population size (the number of chromosomes is set =512). The fitness function will be
computed on each chromosome. This is considered the evaluation for all chromosomes. Following that, the
good population is selected for the generation of new children, and the crossover operations are done on the
selected chromosomes. The next step mutates the new children with specific mutation probability, and then
updates the population with the new children to form the new population and remove the bad ones. The last step
ends by returning the best chromosomes of the final population after a number of iterations that are specified in
the setting (128 here).

Initial population (The set of the available resources (VMs), and the population is randomly generated.

Therefore, the representation of solutions for each gene or (chromosome) consists of VM _ID and ID for each
task to be executed on these VM). As shown in Fig.1.

R1 Rn
............... Users (Request ID).

Cloud Service Provider

Data Center

Fig.1. Representation tasks and VMs.
Fitness function evaluation: The chromosomes having good fitness is selected for generating a child. The
fitness function used in DTG method is based on choosing the min cost.
Parent’s selection: The fitter of the two individuals is selected to be a parent.

Crossover: It can be achieved by selecting two parent individuals and then creating a new individual by
alternating and reforming the parts of those parents. Therefore, two chromosomes which are selected for the
crossover process to generate two offspring will be considered as offspring also.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 611

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Table2. Crossover process

Parentl

VM1 VM2 VM1 || VM3 VM2 VM1

Parent2

VM2 VM1 VM3 || VM1 VM3 VM3

Offspringl

VM1 VM2 VM1 || VM1 VM3 VM3

Offspring2

VM2 VM1 VM3 || VM3 VM2 VM1

Parentl

Parent 2

Before MutationAfter Mutation

6 |7 8|23 4|51

\4
o)
]

2 13

Offspring

Mutation: The mutation is done for an abrupt change in population. In DTG algorithm, swapping of Digits is

done.

Original Offspring

VM1 VM2 VM1 ...VM 1 VM 3 VM3

Mutated Offspring

VM1 VM4 VM1 ... VM2 VM2 VM3

GA iterates the process until it finds the best available VM for the request according to its min cost, and then

it returns VM-id to DCC.

The DCC tells the proposed DTG load balancer to alter the values in the allocation schedule and keep the
state BUSY of an allotted machine in VM State schedule. If the proposed DTG algorithm does not find an
available VM in the index schedule, then it returns -1. When VMs finish the process and DCC receives the
response, it notifies the proposed DTG algorithm to de-allocate the VM. The DTG algorithm then alters the
state of the VM as AVAILABLE. If more requests are waiting, then the process of assigning is started again.
The basic methodology of the proposed algorithm is shown in Fig. 2 and the detailed work of GA in the

proposed DTG as illustrated in Fig. 3.

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

612

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024

VM-id (best available VM)

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Cloudlet Requests

EEXD

Data Center

Acvailable Vs as initial population

GA Load Balancer

MO

'L Controller (DCC)

Asks for Reguest assigning

DTG Load Balancer

Send Bequest to best available—
VM-d

/_

Status Index table
of all VMz

Check

Sratns of 2ll VM
iz Busy (retum -

1) or Available?

Y

Throttled Load Balancer

l— Updat

\

Available Vhiz-1d

Notify

YES VMn

A

Fig.2.The sequence of Dynamic Throttled Genetic Algorithm (DTG).

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

613

ISSN (Print) :2319-8613

ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)
‘L NO

Selection, Crossover Mutation

|

— . New Population
Initial Population * I
VM IJ.ist ES_
Task List Performance Estimation

Chromosome Evaluation

|

Associated Associated Best VMs
Task(s) \IW(S) otlder

l

Choose the First Available VM for
Task with Min Cost

Evaluate Population

Fig.3. Genetic algorithm operation diagram.

Algorithm 1: Dynamic Throttled Genetic Algorithm (DTG)

Input: DC Cloudlet Requests R1, R2, R3, R4,..., Rn
Available VMs (Population of VMs) VM1, VM2, VM3, VM4... VMn.
Output: Scheduled all incoming DC Cloudlet Requests to appropriate first available VMs based on min cost.
1: Throttled Load Balancer algorithm Create an index schedule of VM-id and status.
All VM’s are available at the beginning.
2: DCC receives a new Cloudlet Request from the client.
3: DCC asks the DTG Load Balancer for Cloudlet Request allocation.
4: DTG Load Balancer starts checking for the availability of all the VMs-id.
Case 1: if found
i. Throttled Load Balancer returns all the available VMs-id to the GA Load Balancer.

il. GA Load Balancer initializes a population (a collection of a chromosome) using all available VMs.
iil. GA Load Balancer evaluates every chromosome which consists of genes (A solution) due to its cost.
iv. Select the best chromosome based on fitness cost.
V. Do Crossover operations on selected chromosome (Perform Crossover).
Vi. Mutate the new children with defined Mutation probability (Perform Mutation).
Vii. A new population can be produced by repeating the three operations: Selection, Crossover, and
Mutation.
viii. GA Load Balancer finished iterating (Check for termination condition) and return the appropriate VM-
id to DCC.

iX. The DCC sends the Cloudlet Request to the VM specified by GA Load Balancer.
X. DCC notifies the DTG Load Balancer of the new allotment.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 614

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

1. DTG Load Balancer updates the allotment index schedule accordingly
Case 2: if not found
i. DTG Load Balancer returns -1.

5: When the VM finishes processing the Cloudlet Request, and the DCC receives the response Cloudlet, it
notifies the DTG Load Balancer of the VM de-allocation.

6: If there are more Cloudlet Requests, DCC repeats step 4.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Cloud Analyst

In this section, the performance of the proposed DTG algorithm is analyzed in a highly effective dynamic
environment. It is hard to carry out the test iteratively with reliability, and so cloud sim tool has been selected to
test algorithms before displaying them in a real cloud. The tests are done on the cloud analyst. It is an open
source toolkit, and it is built on top of cloud sim toolkit as shown in Fig. 4. It also, provides analysis of
algorithms performance, and simple graphical user interface that displays the result of simulation in graphical
form as shown in Fig. 5. It lets researchers test their suggested algorithms free, and find a solution to a
performance deadlock before posting in the real cloud. It can also execute tests with several factors repeatedly.
Cloud analyst emulates the real-time with six user bases acting as the six continents of the world. The number
of users is set out of a specific application such as twitter users from North America etc. All user bases are
assigned to a single time zone. Random samples online through peak hours, and offline through off hours, have
been examined. This tool is also elastic[18, 35, 40, 42].

Cloud Simulator

CloudSim Extensions

CloudSim Toolkit

Fig.4. Cloud analyst design built on top of cloud sim toolkit.
Bl Cloud Analyst = T

{elp

Configure
Simulation

| Denine imtemet
‘ Characteristics

Run Simulation

‘ Exit

Show Region Boundaries |

Fig.5. Cloud analyst main screen.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 615

ISSN (Print) :2319-8613

ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

B. EXPERIMENTAL TESTS

In order to test the proposed DTG load balancer algorithm, the optimization process is simulated by
NetBeans IDE 8.0.2 using advanced java for coding [43]. In this test, six User Bases (UB) are fixed in six
different location/regions of the world. The four DCs involving the following characteristics: a number of
resources, cache size, and DC bandwidth. The entire ordering is depicted in Table 3 under the same scenario
which consists of four DCs and six UBs in six different geographical points as shown in Fig.6. The four DCs
are considered to serve the requests of users. A first DC is located in region 0 which consists of 32 VM, the
second one is in region 1 which consists of 17 VM, the third one is in region 2 which consists of 50 VM and the
fourth one is in region 3 which consists of 81 VM. The simulation duration is about 60 minutes. The proposed
method will be taken on two diverse levels. There are three popular routing protocols that are available in the
simulator, which are: “Closest Data Center”, “Optimize Response Time” and “Reconfigure Dynamic with
Load”. In the first level, the closest data center is selected as a broker policy and set the others as default. The
second level implements the proposed DTG load balancer, which executes the load balance policy when serving
and assigning requests.

Table3. Experimental Parameter

Parameters Value Used

Service Broker Policy Closest Data Center

VM Image Size 10000

VM Memory 512

VM Bandwidth 1000

No. of VMs DC1-32/DC2-17/DC3-50/DC4-81
Data Center Architecture X86

Data Center OS Linux

Data Center VMM Xen

Data Center No. of Machines (Physical h/W units) 10

Data Center Memory per Machine 204800

Data Center Storage per Machine 100000000

Data Center Available BW per Machine 1000000

Data Center No. of Processors per Machine 4

Data Center Processors Speed 10000

Data Center VM Policy TIME_SHARED

User Grouping Factor 10000

Request Grouping Factor 1000

Executable Instruction Length 100000

Load Balancing Policy Dynamic Throttled Genetic (DTG)

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

616

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

l’ Main Configuration | Data Center Configuration | Advanced

simulation Duration: |60 | [min [+]
tenbasts MName Region Requests pery Data Size | PeakHours | Peak Hours Avg Peak | Avg Off-Peak
User perRequest | Start(GMT) | End (GMT) Users Users
per Hr {bytes) Add New
UB1 0 120 100 4 10 1000 100) =
uB2 1 120 100 4 10 2000 100
UB3 2 120 100 4 10 3000 1001
UB4 3 120 100 4] 10 4000 100:
UBS 4] 120 100 4 10 5000 100)
Application Service Broker Policy: |Closest Data Center [~]
Deployment
Configuration: =
Data Center #\WMs Image Size Memory BW
DC1 32 10000 512 1000
DC2 17 10000 512 1000
DC3 50 10000 512 1000
DC4 81 10000 512 1000
Fig. 6. Cloud Analyst Main Configuration.
C. Results

Each DC host has a particular amount of VMs. In this test, four DCs are considered with 32, 17, 50 and 81
VMs. The simulation is repeated for ESCE, Throttled and the proposed DTG.

The results of the overall response time and DC processing time of ESCE algorithm obtained based on the
above considerations. The overall response time is 1384.80 ms. The DC processing time is 1267.42 ms. The
response time by region for all six UBs is shown in Fig.7.

Overall Response Time Summary

Average (ms) Minimum (ms) Maximum (ms) Export Results

Overall Response Time: 1384.80 m.azi 2637.27
Data Center Processing Time: 1267.42 T720.26 2587.76

Response Time By Region

lIserbase Ava (ms) Iin {ms) Max (ms)
B 1,061.232 820.757 1,352.011
B2 1,063.276 T71.267 1,324 526
UB3 1,295 282 1,004 006 1,646.01
UB4 2,114.083 1,625.01 2,637.265
UB5 1,562 565 1,240.017 1,828.024
UB6 1,220,545 1,004.015 1,486.023

Fig.7. Overall response time and DC processing time of ESCE.

The results for the simulation done based on the specification provided in the above TABLE 3. The
geographical location of each DC with their average, minimum and maximum execution time for the ESCE
algorithm is shown in Fig.8, where the figure shows the overall response time for the DCs for the VMs to serve
the requests if the service broker policy is set to the closest DC.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 617

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024

BT

e
Esp. time™

Avg: 1081 Zms [

Max: 1352.0ms

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

A
1285.3ms
; 1646.0ms
1004 Oz

LBs

ecp. time

Avg: 1862 Bms

08

. #LE‘D“ time

Avg:

Mae:

2114.tms

2837 3ms

i

Avg: 1063.3ms
Avg: 1220 .5ms

Moo 1324 Eme
Mz 1495.0ms

Fig.8. Data Center locations and user bases requests for ESCE.

The result of overall response time and DC processing time of throttled algorithm are as follows. The overall
response time is 1408.74 ms. The DC processing time is 1291.37 ms. The response time by region for all six

user bases is shown in Fig.9.

Overall Response Time Summary

Average (ms) Minimum {ms) Maximum (ms) [mExponResuItsm
Overall Response Time: 1408.74 171.27 2796.77 S
Data Center Processing Time: 1291.37 720.26 2745.01
Response Time By Region
| Usembase Aug (ms) Min{ms) Max(ms) |
uB1 829
1UB2 771.267
|uB3 1,004.006)
B4 ,260.277| 182251
|UB5. 1,562.749 1240.017| 4
|UBE 1220.282] 1,004.015] 1496.023)

Fig.9. Overall response time and DC processing time of throttled.

Fig.10 gives the simulation complete screen which shows the results graphically for each DC with their
average, the minimum and maximum execution time for a throttled algorithm. It displays the results which
indicate the response time by region whether this request is made from a single user or multiple users.

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

618

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024

HeE e
N

Max 13520ms | b 1004.0ms

e
Esp. timeT

Avg 10813ms [

Avg: 1295.3ms

Max: 1846 Oms

L5

esp. time
Avgr 1582, Tms
M= 1828.0ms

Min: §240 O

LC4

s
™,
SglB4
esp, time
2260 3ms
2796 Bms

v 1822 5me

Fig.10. DC locations and user bases requests for Throttled.

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

The result of overall response time and DC processing time of the proposed DTG algorithm are as follows.
The overall response time it is 1372.02 ms. The DC processing time is 1254.49 ms. The response time by region
for all six UBs is shown in Fig.11. The performance of the DTG algorithm is enhanced as follows. DTG gives
less response time and less processing time with better resource utilization compared with ESCE and throttled

algorithms.
Overall Response Time Summary
Average (ms) Minimum (ms) Maximum (ms)

1372.02 T71.27 2796.77
Data Center Processing Time: 1254.49 720.26 274501

Overall Response Time:

Response Time By Region

1| Userbase Min (ms)
UB1 1l
|us2
UB3 '
B4
U85
lUBE

Fig.11. Overall response time and DC processing time of DTG.

Export Results |

Max (ms}

1626024
1,486,023

Fig.12 shows the geographical location of each DC with their average, the minimum and maximum

execution time for DTG algorithm

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019

619

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

8 - tNLIBS slel
i | . time .,
BT | o N
%Jasp_ tima - | Avg: 1285 2ms -‘ﬁEM
=p. ti

Avgs 1081 Zms [Max: 1645 Oms f
G | Avg: 2035 Tms
Mz 1352.0ms I Min: 1004.0ms
Max: 2796 .8ms

v 1E250me

R

Avg: 1063 1ms

Max: 1324 Ems

Fig.12. DC locations and user bases requests for DTG.

D. Comparative Results

To verify the improvement of the proposed DTG algorithm, it is compared with the standard ESCE and
throttled as shown in Table 4. The enhancement achieved by the proposed DTG algorithm is verified by
comparative analysis. The proposed DTG algorithm tries to minimize the response time as well as reduce the
DC processing time of VMs that are going to miss their deadlines. It can be seen that the proposed DTG
algorithm guarantees a fair allocation of the requests to each DC. This fair allocation safely gets a better
response, unlike traditional policies. With the proposed DTG algorithm, the overall response time and DC
processing time for a request has been improved compared to the other two algorithms. The result proved that
DTG makes use of VMs more effectively while bringing down the response time of the tasks by 36.72% in
comparison with others. Experimental results show that the DTG load balancing algorithm gives less response
time and less processing time. The results also suggest that the DTG VM load balancer allocated the requests to
VMs evenly by overcoming the limitation of throttled VM load balancer.

Table4. Comparison result between Existing and DTG

Overall Response time Data Center Processing Time
Parameters
ESCE Throttled DTG ESCE Throttled DTG
Avg(ms) 1384.8 1408.74 1372.02 1267.42 1291.37 1254.49
Min(ms) 771.27 771.27 771.27 720.26 720.26 720.26
Max(ms) 2637.27 2796.77 2796.77 2587.76 2745.01 2745.01

The performance of the DTG algorithm is evaluated by objective 1: if the response time is low, then the
method is said to be more efficient. It is measured in terms of milliseconds (ms). Fig. 13 shows the average
response time, which illustrates that the response time of the proposed DTG algorithm is better than the other
investigated algorithms. From the results of all the three algorithms, it can be concluded that there is no
difference in the cost, but there is a difference between the overall response time of all the UBs. The DTG
algorithm is found to be the best with Avg response time of 1372.02 ms. While Avg response time is 1408.74
ms for throttled and 1384.80 ms for ESCE.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 620

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Overall Response Time

1410

1400

1350

1380

1370

1360

1350
ESCE Throttled Dynamic Throttled
Genetic

Fig.13. Comparison overall response time between Existing and DTG.

The performance of the DTG algorithm is evaluated by objective 2: if the DC processing time is low, then
the method is said to be more efficient. It is measured in terms of ms. Fig. 14 shows the results based on the DC
processing time. As can be seen, the DC processing time of the proposed DTG algorithm is better than the
others. The results of all the three algorithms indicate that there is no difference in the cost, but there is a
difference between the DC processing time of all the UBs. The DTG algorithm is found to be the best with Avg
of 1254.49 ms. While Avg is 1291.37 ms for throttled, and 1267.42 ms for ESCE.

Data center processing time

1300
1250
1280
1270
1260
1250
1240

1230

ESCE Throttled Dynamic Throttled
Genetic

Fig.14. Comparison DC processing time between Existing and DTG.

The DC request servicing time is analyzed by comparing the three loading policy ESCE, Throttled and DTG,
and the results are shown in Table 5. Fig. 15 shows the comparison results. The X-axis indicates the DCs and
Y-axis indicates the average request servicing time at each DC in ms. A load balancing is considered more
efficient when the processing of requests at each DC takes less time. The result shows that there is a slight
difference between the four DC request servicing time, and DTG is found to be the best.

Table5. Results indicating the Request Servicing Times at each Data Center.

Data ESCE Throttled DTG

DC1 1015.67 1015.67 1015.68
DC2 1013.41 1013.42 1013.41
DC3 1253.95 1253.95 1253.95
DC4 2064.54 2210.6 1985.67

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 621

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Data Center Request Servicing Times

2500
2000 A

1500 P

DC1 DC2 DC3 DCca

=g ESCE ==ge=Throttled Dynamic Throttled Genetic
Fig.15. DC request servicing times between DTG, Throttled and ESCE.

The response time of all the UB (UB1-UB6) in various regions is analyzed, and the result is shown in Table 6
and Fig. 16. As can be seen, there is a slight difference between the response time of all the UB, and DTG is
found to be the best.

Table6. Average response time by Region where User bases are created

User Base ESCE Throttled DTG
UB1 1061.23 1061.26 1061.31
UB2 1063.28 1063.17 1063.13
UB3 1295.28 1295.26 1295.21
UB4 2114.08 2260.28 2035.1
UB5 1562.56 1562.75 1563.02
UB6 1220.54 1220.28 1221.3

Response Time by Region

2500

2000

1300
1000

500

UBl uB2 UB32 UB4 UBS UB6

e=ge=[ESCE ==ge=Throttled Dynamic Throttled Genetic

Fig.16. Response time by region chart among ESCE, Throttled and DTG.

Cloud analyst is used to regenerate the results of throttled, ESCE and RR algorithms, described in previous
papers, according to the settings used in each paper. After that, changes are made to the settings to evaluate the
performance of the previous algorithms and the proposed DTG algorithm. This is done to test the algorithms on
different scenarios and to prove that the proposed DTG algorithm is the best, as shown in Fig. 17. Each scenario
represents a different configuration. These scenarios are shown in Table 7. It is clear that the proposed DTG
algorithm is more efficient for the cloud load balancing. The proposed algorithm performs better than the rest of
the algorithms on the basis of response time.

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 622

ISSN (Print)

:2319-8613

ISSN (Online) : 0975-4024

Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Table7. Simulation Scenarios

Response Time (ms)

Data Center Processing Time

ms
Reference | Alteration Algorithm - (-)
Avg Min Max Avg Min Max
(ms) (ms) (ms) (ms) (ms) (ms)
Throttled 640.1 47.71 2190.4 | 576.26 1.48 2087.26
[44](2018) ESCE 1209.79 | 47.71 | 2215.77 | 1141.39 1.48 2125.94
RR 1209.8 4771 | 2215.77 | 1141.39 1.48 2125.94
Change (DTG) 389.96 48.51 684.03 340.2 6.26 625.77
Peal;gisers Throttled | 38996 | 4851 | 684.03 | 3402 6.26 625.77
SEEEEl | g il ESCE 389.96 | 48.51 684.03 | 3402 6.26 625.77
Instruction
Liygih RR 389.96 48.51 684.03 340.2 6.26 625.77
Throttled 57.09 34.45 87.01 6.64 0 24.34
[45](2016) ESCE 63.19 3445 | 9818.03 | 12.84 0 9768.77
RR 62.85 3445 | 9818.03 12.5 0 9768.77
Change (DTG) 157.64 39.85 352.94 0.61 0.05 1.39
Memory,
: Throttled 157.66 39.85 352.94 0.61 0.05 1.39
Scenario? Duration 5
cenarto min and ESCE 157.68 | 39.85 | 352.94 0.61 0.05 1.39
Decrease
NO.DC RR 157.65 39.85 352.94 0.61 0.05 1.39
Throttled 177.66 39.21 388.64 0.37 0.01 0.96
[46](2015) ESCE 177.66 39.21 388.64 0.37 0.01 0.96
RR 177.64 39.18 388.64 0.36 0.01 0.97
Change (DTG) 170.51 38.71 393.14 0.38 0.02 0.96
SETTIEES Throttled | 17052 | 3871 | 393.14 0.38 0.02 0.96
policy to
Scenario3 Closest Data ESCE 170.54 38.71 393.14 0.38 0.02 0.96
Center and
Decrease RR 170.52 38.71 393.14 0.38 0.02 0.96
UB
Throttled 150.1 39.95 386.33 10.13 0.31 32.08
[47](2014) ESCE 150.1 39.95 386.33 10.13 0.31 32.08
RR 150.07 39.76 386.33 10.1 0.31 32.08
Change (DTG) 124.46 47.66 403.83 8.48 2.83 14.38
Duration 10 ™ oo™ 1 12535 | 47.93 | 403.83 8.52 2.83 14.38
min and
Scenario4 Service ESCE 125.09 47.66 403.83 8.49 2.83 14.38
policy to
Closest Data RR 124.93 47.93 403.83 8.51 2.83 14.38
Center
Throttled 117.89 36.76 401.88 1.33 0.07 2.17
[48](2014) ESCE 117.89 36.76 401.88 1.33 0.07 2.17
RR 117.89 36.76 401.88 1.33 0.07 2.56
(DTG) 118.21 38.13 365.77 1.28 0.13 2.01
. Change Throttled 118.27 38.13 365.77 1.28 0.13 2.01
Scenario5 Duration 10
min ESCE 118.31 38.13 365.77 1.28 0.13 2.01
RR 118.28 38.13 365.77 1.28 0.13 2.01

DOI: 10.21817/ijet/2019/v11i3/191103041

Vol 11 No 3 Jun-Jul 2019

623

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

Experimental results show that the DTG load balancing algorithm gives less response time according to the
different five scenarios in different five papers. The results of all the four algorithms indicate that there is no
difference between the DC processing time, but there is a slight difference between the overall response time of
all the UBs. The DTG provides the best Avg response time. The results prove that combining GA and Throttled
improves the response time of VMs as compared to ESCE, throttled, and RR. The results also suggest that the
DTG VM load balancer allocated the requests to VMs evenly, and thus it overcome the limitation of throttled
VM load balancer.

Response Time

385.96 389.96 3859.96 385.96 B Scenariol
400
350 W Scenario2
200 W Scenario3
250 Scenariod
et Scenarios
150
100
50
0
Dynamic Throttled ESCE RR
Throttled
Genetic

Fig.17. Avg response time in different scenarios among Throttled, ESCE, RR, and DTG.

V. CONCLUSION

This paper proposes a dynamic load balancing algorithm that employs a Genetic Algorithm. The proposed
algorithm is called DTG. A load balancing algorithm aims at solving the problem of the cloud data centers
being affected by some servers having to serve a heavy load, while other servers are asleep or have a little
amount of load. When servers are equally loaded, the performance will improve. This is done by reassigning
from a heavily loaded server to a lightly loaded server. One important aspect of cloud computing is the
minimization of response time so as to balance the workload and raise business rendering with client
satisfaction. The proposed DTG aims at avoiding unfair distribution of the load through the virtual machines.

The performance of the proposed DTG algorithm is investigated with the help of a graphical user interface
based Cloud Analyst tool. Java language is used to develop the class file for implementation in the tool. From
the results of the simulation, it can be concluded that the proposed DTG algorithm works efficiently when it
comes to resource utilization, the processing time of the data center, and response time of the user base. The
simulation results show that the overall response time and data center processing time of DTG is improved, and
the cost is reduced as compared with the Throttled and ESCE algorithms.

REFERENCES

[11 S. Basu, A. Bardhan, K. Gupta, P. Saha, M. Pal, M. Bose, et al., "Cloud computing security challenges & solutions-A survey," in
Computing and Communication Workshop and Conference (CCWC), 2018 IEEE 8th Annual, 2018, pp. 347-356.

[2] F.F.Moghaddam, M. Ahmadi, S. Sarvari, M. Eslami, and A. Golkar, "Cloud computing challenges and opportunities: A survey," in
Telematics and Future Generation Networks (TAFGEN), 2015 1st International Conference on, 2015, pp. 34-38.

[31 M. H. Ghahramani, M. Zhou, and C. T. Hon, "Toward cloud computing QoS architecture: Analysis of cloud systems and cloud
services," IEEE/CAA Journal of Automatica Sinica, vol. 4, pp. 6-18, 2017.

[4] J. Moura and D. Hutchison, "Review and analysis of networking challenges in cloud computing," Journal of Network and Computer
Applications Journal of Network and Computer Applications, vol. 60, pp. 113-129, 2016.

[5] V.R.Kanakala, V. K. Reddy, and K. Karthik, "Performance analysis of load balancing techniques in cloud computing environment,"
in Electrical, Computer and Communication Technologies (ICECCT), 2015 IEEE International Conference on, 2015, pp. 1-6.

[6] E.Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih Qader, "Load-balancing algorithms in cloud computing: A survey," YINCA
Journal of Network and Computer Applications, vol. 88, pp. 50-71, 2017.

[7] N. Patil and D. Aeloor, "A review-different scheduling algorithms in cloud computing environment," in Intelligent Systems and
Control (ISCO), 2017 11th International Conference on, 2017, pp. 182-185.

[8] N. Panwar and M. S. Rauthan, "Analysis of various task scheduling algorithms in cloud environment," in Cloud Computing, Data
Science & Engineering-Confluence, 2017 7th International Conference on, 2017, pp. 255-261.

[91 E. S. Alkayal, N. R. Jennings, and M. F. Abulkhair, "Survey of task scheduling in cloud computing based on particle swarm
optimization," in Electrical and Computing Technologies and Applications (ICECTA), 2017 International Conference on, 2017, pp. 1-
6.

[10] J. M. Shah, K. Kotecha, S. Pandya, D. Choksi, and N. Joshi, "Load balancing in cloud computing: Methodological survey on different
types of algorithm," in Trends in Electronics and Informatics (ICEI), 2017 International Conference on, 2017, pp. 100-107.

[11] A. Dave, B. Patel, and G. Bhatt, "Load balancing in cloud computing using optimization techniques: A study," in Communication and

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 624

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

DOI

Electronics Systems (ICCES), International Conference on, 2016, pp. 1-6.

S. Aslam and M. A. Shah, "Load balancing algorithms in cloud computing: A survey of modern techniques," in Software Engineering
Conference (NSEC), 2015 National, 2015, pp. 30-35.

S. Patel, R. Patel, H. Patel, and S. Vahora, "CloudAnalyst: A Survey of Load Balancing Policies," International Journal of Computer
Applications, vol. 117, 2015.

I. N. Ivanisenko and T. A. Radivilova, "Survey of major load balancing algorithms in distributed system," in Information
Technologies in Innovation Business Conference (ITIB), 2015, 2015, pp. 89-92.

M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, and A. B. Darem, "An improved SJF scheduling algorithm in cloud computing
environment," in Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), 016 International
Conference on, 2016, pp. 208-212.

A. A. Alexander and D. L. Joseph, "An Efficient Resource Management for Prioritized Users in Cloud Environment Using Cuckoo
Search Algorithm," Procedia Technology, vol. 25, pp. 341-348, 2016.

A. Gupta and R. Garg, "Load Balancing Based Task Scheduling with ACO in Cloud Computing," in Computer and Applications
(ICCA), 2017 International Conference on, 2017, pp. 174-179.

S. Garg, D. Gupta, and R. K. Dwivedi, "Enhanced Active Monitoring Load Balancing algorithm for Virtual Machines in cloud
computing," in System Modeling & Advancement in Research Trends (SMART), International Conference, 2016, pp. 339-344.

A. K. Kulkarni and B. Annappa, "Load balancing strategy for optimal peak hour performance in cloud datacenters," in Signal
Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International Conference on, 2015, pp. 1-5.

M. S. Shakir and A. Razzaque, "Performance comparison of load balancing algorithms using cloud analyst in cloud computing," in
Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 2017 IEEE 8th Annual, 2017, pp. 509-513.
L. S. Nishad, S. Kumar, S. K. Bola, S. Beniwal, and A. Pareek, "Round robin selection of datacenter simulation technique cloudsim
and cloud analsyt architecture and making it efficient by using load balancing technique," in Computing for Sustainable Global
Development (INDIACom), 2016 3rd International Conference on, 2016, pp. 2901-2905.

N. K. Das, M. S. George, and P. Jaya, "Incorporating weighted round robin in honeybee algorithm for enhanced load balancing in
cloud environment," in Communication and Signal Processing (ICCSP), 2017 International Conference on, 2017, pp. 0384-0389.

H. A. Makasarwala and P. Hazari, "Using genetic algorithm for load balancing in cloud computing," in Electronics, Computers and
Artificial Intelligence (ECAI), 2016 8th International Conference on, 2016, pp. 1-6.

G. Rjoub and J. Bentahar, "Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning," in Future Internet of Things
and Cloud (FiCloud), 2017 IEEE 5th International Conference on, 2017, pp. 272-279.

F. Sadia, N. Jahan, L. Rawshan, M. T. Jeba, and T. Bhuiyan, "A priority based dynamic resource mapping algorithm for load
balancing in cloud," in Advances in Electrical Engineering (ICAEE), 2017 4th International Conference on, 2017, pp. 176-180.

M. Aruna, D. Bhanu, and S. Karthik, "An improved load balanced metaheuristic scheduling in cloud," Cluster Comput. Cluster
Computing, pp. 1-9, 2017.

R. K. Jena, "Multi Objective Task Scheduling in Cloud Environment Using Nested PSO Framework," Procedia Computer Science
Procedia Computer Science, vol. 57, pp. 1219-1227, 2015.

S. Garg, R. K. Dwivedi, and H. Chauhan, "Efficient utilization of virtual machines in cloud computing using Synchronized Throttled
Load Balancing," in Next Generation Computing Technologies (NGCT), 2015 1st International Conference on, 2015, pp. 77-80.

S. G. Domanal and G. R. M. Reddy, "Load balancing in cloud environment using a novel hybrid scheduling algorithm," in Cloud
Computing in Emerging Markets (CCEM), 2015 IEEE International Conference on, 2015, pp. 37-42.

G. P. P. Geethu, S. K. Vasudevan, D. nd International Symposium on Big, and I. Cloud Computing Challenges, "An in-depth analysis
and study of Load balancing techniques in the cloud computing environment," Procedia Comput. Sci. Procedia Computer Science,
vol. 50, pp. 427-432, 2015.

K. R. Babu, A. A. Joy, and P. Samuel, "Load Balancing of Tasks in Cloud Computing Environment Based on Bee Colony Algorithm,"
in Advances in Computing and Communications (ICACC), 2015 Fifth International Conference on, 2015, pp. 89-93.

M. S. George, K. N. Das, and B. Pushpa, "Enhanced honeybee inspired load balancing algorithm for cloud environment,”" in
Communication and Signal Processing (ICCSP), 2017 International Conference on, 2017, pp. 1649-1653.

M. R. Mesbahi, M. Hashemi, and A. M. Rahmani, "Performance evaluation and analysis of load balancing algorithms in cloud
computing environments," in Web Research (ICWR), 2016 Second International Conference on, 2016, pp. 145-151.

A. Kumar and M. Kalra, "Load balancing in cloud data center using modified active monitoring load balancer," in Advances in
Computing, Communication, & Automation (ICACCA)(Spring), International Conference on, 2016, pp. 1-5.

A. Ragmani, A. El Omri, N. Abghour, K. Moussaid, and M. Rida, "A performed load balancing algorithm for public Cloud computing
using ant colony optimization," in Cloud Computing Technologies and Applications (CloudTech), 2016 2nd International Conference
on, 2016, pp. 221-228.

S. Dam, G. Mandal, K. Dasgupta, and P. Dutta, "Genetic algorithm and gravitational emulation based hybrid load balancing strategy
in cloud computing," in Computer, Communication, Control and Information Technology (C3IT), 2015 Third International
Conference on, 2015, pp. 1-7.

P. A. Pattanaik, S. Roy, and P. K. Pattnaik, "Performance study of some dynamic load balancing algorithms in cloud computing
environment," in Signal processing and integrated networks (SPIN), 2015 2nd International Conference on, 2015, pp. 619-624.

R. Panwar and B. Mallick, "Load balancing in cloud computing using dynamic load management algorithm," in Green Computing and
Internet of Things (ICGCloT), 2015 International Conference on, 2015, pp. 773-778.

J. Nayak, B. Naik, A. Jena, R. K. Barik, and H. Das, "Nature Inspired Optimizations in Cloud Computing: Applications and
Challenges," in Cloud Computing for Optimization: Foundations, Applications, and Challenges, ed: Springer, 2018, pp. 1-26.

M. Gupta and A. Jain, "A survey on cost aware task allocation algorithm for cloud environment," in Signal Processing, Computing
and Control (ISPCC), 2017 4th International Conference on, 2017, pp. 642-646.

M. Lagwal and N. Bhardwaj, "Load balancing in cloud computing using genetic algorithm," in Intelligent Computing and Control
Systems (ICICCS), 2017 International Conference on, 2017, pp. 560-565.

A. N. Singh and S. Prakash, "WAMLB: Weighted Active Monitoring Load Balancing in Cloud Computing," in Big Data Analytics,
ed: Springer, 2018, pp. 677-685.

R. Sachdeva and S. Kakkar, "A Novel Approach in Cloud Computing for Load Balancing Using Composite Algorithms," IJARCSSE
International Journal of Advanced Research in Computer Science and Software Engineering, vol. 7, pp. 51-56, 2017.

A. Meftah, A. E. Youssef, and M. Zakariah, "Effect of Service Broker Policies and Load Balancing Algorithms on the Performance of
Large Scale Internet Applications in Cloud Datacenters," INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE
AND APPLICATIONS, vol. 9, pp. 219-227, 2018.

S. P. Singh, A. Sharma, and R. Kumar, "Analysis of Load Balancing Algorithms using Cloud Analyst," International Journal of Grid
and Distributed Computing, vol. 9, pp. 11-24, 2016.

1 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 625

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Shymaa G. Eladl et al. / International Journal of Engineering and Technology (IJET)

[46] D. Patel and A. S. Rajawat, "Efficient throttled load balancing algorithm in cloud environment," International Journal of Mordern
Trends in Engineering and Research, vol. 2, 2015.

[47] V. Behal and A. Kumar, "Cloud computing: Performance analysis of load balancing algorithms in cloud heterogeneous environment,"
in Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference-, 2014, pp.
200-205.

[48] S. Lamba and D. Kumar, "A Comparative Study on Load Balancing Algorithms with Different Service Broker Policies in Cloud
Computing."

DOI: 10.21817/ijet/2019/v11i3/191103041 Vol 11 No 3 Jun-Jul 2019 626

	Cloud Computing Load Balancing usingGenetic and Throttled Hybrid Algorithm
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATEDWORK
	III. METHODOLOGY
	IV. EXPERIMENTAL RESULTS AND ANALYSIS

	V. CONCLUSION
	REFERENCES

