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ABSTRACT 

     The results of this study indicated the optimization of the effective parameters in fixing the percentage of gold 
and thickness of Au-Cu alloy on the pure silver electrode. This method included specific parameters such as the 
average current density, duty cycle percentage, bath temperature, concentration of gold and cyanide ions in 
electrolyte, pH, stirring of electrolyte and the wetting agent additive for obtaining  gold percentage with standard 
18K standard carat (75% gold and 25% Copper) which have been optimized effectively  using "one- factor- at –
a- time" method. Under optimum conditions and fixing up the percentage of gold in the alloy, along with changes 
in the duty cycles (20% to 90%), the thickness of the layers was also optimized. The thickness of the cross sections 
of the co-deposited samples and the percentage of gold in the deposits were investigated by SEM-EDX, XRF, and 
ICP-OES. Optimum conditions were determined regarding the amount of gold co-deposited with copper and the 
thickness of deposits. The results showed that the Au-Cu alloy electro-deposited layer in the 30% duty cycle and 

the average current density by 0.6 ሺ
mA

cm2ሻwas as the layer formed in optimal conditions with 74.4 wt. % gold and 

with 202µm electro-deposit thickness.  

Keywords: Electro-deposition, Average current density, One-factor- at- a- time method, Optimization of Au-Cu 
alloys, Duty cycle, Electro-deposit thickness, Percentage of gold 

1-Introduction 

The electrodeposition facilitates the control of experimental parameters including the electrolytic composition, 
deposition temperature, applied current density, load to be deposited and pH of the solution [1]. It is a highly 
suitable method for fabricating such structures as it allows deposition of metals with much larger thickness and 
better morphology than that achieved by physical deposition. The electrochemical deposition of gold is one of the 
methods for producing hollow gold jewelry with various karats [2]. The microstructure in electrodeposited metals 
can be controlled by different deposition parameters like bath temperature, solution pH and applied current density 
[3]. Gold alloy layers with standard karats of 9K to 22K, which are formed by the electrochemical deposition 
method, are characterized by a specific gold percentage, mechanical properties, hardness and flexibility for 
making hollow gold jewelry. Initially, the Au-Cu-Cd baths were created because cadmium was used as a 
brightening agent in a solution of Au-Cu alloying electrolytes. The bath was widely used in the production of 
hollow artifacts of gold and watch cases with different percentages of gold in the alloy. These layers were very 
shiny, uniform, ductile and also, they were capable of creating high thicknesses about 300-500μm [4-5]. The color 
of the layers resulting from the electrochemical deposition of gold and copper is often the same as the color of the 
alloy produced by the metallurgical method. The addition of the third element is considered as the main problem, 
because, the brightening and uniformity of the surface layer should be maintained in addition to the color and gold 
percentage in the alloy. In creating thick gold and alloys in the production of hollow gold jewelry [6-7], due to 
cadmium toxicity, this element is removed from the Au-Cu of the basic things gradually. 

One of the goals regarding the use of pulse current is to reach the desired thickness by maintaining the percentage 
of alloying elements as well as its mechanical properties. Electrochemical deposition with pulsed current has 
provided a great opportunity for extensive research not only in the industry of producing hollow artifacts, but also 
in the electronics, aerospace and automotive industries [8-9]. Some of the most important advantages of 
electrochemical deposition using  pulsed current, especially in forming the thick layers, include increasing the 
deposition efficiency, creating higher density and fine-grained layers. The changes are much less in the thickness 
of the layers at different points of the surface which indicates the less need for organic additives rather than direct 
current [10]. The use of pulsed current provides the basis for creating a denser layer rather than direct current, 
which results in an increase in nucleation and formation of fine-grained layers [11-12]. Furthermore, increasing 
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the current results in the surface roughness [13-14]. In deposition by direct current, the current density is the only 
variable parameter, but in pulsed electrochemical deposition, there are at least three parameters including the pulse 
height (I୮), off-time and on-time time, which can be found in various electro-chemical deposition processes for 
optimization. Typically, the pulse illumination time can vary from 1.0 to 9.9 milliseconds and the pulse power off 
time may vary from 1 to 99 milliseconds. The average current density is obtained using an ammeter. In order to 
have the same deposition rate using pulse current instead of direct current, the average current density should be 
equal to direct current [15]. 

Given the pulse current at any moment, the current density and the pulse duration can be adjusted. By selecting 
the pulse parameters for the electrochemical deposition of metals and alloys carefully, the physical and chemical 
properties of the deposited layers can be controlled very carefully. Having adjusted the pulse current parameters, 
a significant increase would be achieved in the thickness of the layer compared to the direct current at the same 
values of electricity from the electrolyte [7]. During pulse electro-deposition, the percentage of duty cycle (% θ) 
represents the percentage of total pulse cycle time [7] and it is calculated by the following equation: 

% 𝐃𝐮𝐭𝐲 𝐂𝐲𝐜𝐥𝐞 = 
𝐭𝐨𝐧

𝐭𝐨𝐧ା𝐭𝟎𝐟𝐟
ൈ 𝟏𝟎𝟎                (1) 

In the pulsed electrochemical deposition process, the average flow density (Iୟ୴) is: 

𝐈𝐚𝐯𝐠 ൌ 𝐈𝐩
𝐭𝐨𝐧

𝐭𝐨𝐧ା𝐭𝟎𝐟𝐟
                                         (2) 

Which Iୟ୴ and I୮ are the mean values of the average current density and pulse current density [7].  

The theory thickness (T୲୦ୣ୭୰୷), in micrometers, also follows from the relation 

𝐓𝐭𝐡 ൌ
𝐦𝐚ൈ𝟏𝟎𝟒

𝐀ൈ𝛒𝐚𝐥𝐥𝐨𝐲
                                              (3) 

It is calculated that 𝑚 is the mass of the deposited layer in grams; A is the cathode surface area in cmଶ and ρୟ୪୪୭୷ 
, is the density of the deposited layer in grams per cubic centimeter [16]. ρୟ୪୪୭୷ Is obtained from the following 
relationship: 

𝟏

𝛒𝐚𝐥𝐥𝐨𝐲
ൌ

𝐟𝐀𝐮

𝛒𝐀𝐮


𝐟𝐂𝐮

𝛒𝐂𝐮
                                        (4) 

In the above relation, ρ୳ and ρେ୳ are the density of gold and copper whose value are equal to ρ୳=19.3 
୰

ୡ୫య and 

ρୡ୳=8.96 
୰

ୡ୫య, as well as f୳ and ρେ୳ that are the components of weighted gold and copper deposited in the layer 

[2]. Using the results obtained by scanning emission microscopy (SEM), the average thickness of the layers 
obtained in experimental study was compared with theoretical values, and the percentage of the formation of the 
layers (% ε) was calculated by the following equation: 

% 𝛆 ൌ
𝐓𝐚𝐯𝐠

𝐓𝐭𝐡
 × 100                                       (5) 

Tୟ୴ and T୲୦ are the average thicknesses of the layer obtained and calculated regarding thickness of the theory in 
micrometers [16]. 

In electro-deposition with the same values of electricity, the pulse current would be thicker than direct current. 
By applying the specified potential value during a pulse cycle, at the Off-time of pulse, the potential decreases 
slightly. Hence, electrochemical reduction is observed over the period of Off-time [9]. 

In this research, firstly, the parameters of direct and pulsed current density (with 10% duty cycle), bath 
temperature, concentration of gold and cyanide in solution, pH, agitation speed and additive effect were optimized 
by the "one- factor- at- a- time" method [17], in order to reach the standard percentage of gold in the sample 
(Wt.75% Au and wt.% 25 Cu). After fixing the percentage of gold in the layers, changes in the percentage of duty 
cycle (20% to 90%) were investigated in order to achieve the optimal thickness of the alloy layer. 

The analysis and determination of the exact amount of Au in alloys of gold artifacts were carried out using the 
standard method called copulation. New developments in the field of ICP spectrometry, which were more specific 
for precious metals, suggested that the mentioned technique could be regarded as a suitable alternative to 
copulation. The precision, speed and the possibility of simultaneous analysis of several metals in alloys of gold 
artifacts were the advantages of this method compared to copulation. The use of ICP to determine the values of 
precious metals in gold artifacts could be confirmed only if the results of this method had an error rate of less than 
0.1%. In particular, in order to determine the amount of gold in alloys of gold artifacts, the amount of gold should 
be focused more than all other alloying elements [18]. 
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2-Materials and Methodology 

Potassium Cyanide, Copper (I) cyanide, Lauryl dimethyl amine oxide (LDAO), Sodium hydroxide and Sulfuric 
acid were purchased from Merck and Potassium gold cyanide was purchased from Umicore GmbH.  

An electro-deposition bath was a Pyrex beaker with a diameter of 110 mm and a height of 140 mm in the volume 
of 1 liter. The temperature control in the bath was performed using an IKA C-MAG HS7 heater with an accuracy 
of ±0.1. The anodes were platinum-titanium mesh beads with dimensions of 80 × 100 millimeter, which were 
fixed in the beaker wall. Pure silver was prepared by casting as a cathode in the dimensions of 1cm2 and thickness 
of 1mm, and then the finishing and polishing operations were done [4]. The bath agitation was carried out by a 
magnetic stirrer. The pH of the bath was also adjusted by the HANNA HI 98107 pH meter. 

All experiments were performed by the pulsed power supply of the SL20 PRC switch mode, made in Iran. The 

current density (pulse and direct) in the range of 2-12 
୫

ୡ୫మ was used to create the layers with a specific gold 

percentage and also to investigate the thickness of the layers. Weighing the samples was carried out using the 
Sartorius GK1203 analytical balance with a precision of 0.0001 g before and after electro-deposition. 

The Au-Cu alloy bath was prepared by the composition listed in Table 1 [19-20]. 

 
Table 1. Electrodeposition bath composition of Au-Cu 

Components Electrolyte concentration range (g/l) 
KCN  18-25 

𝐊𝐀𝐮ሺ𝐂𝐍ሻ𝟐. 𝟔𝟖. 𝟐 𝐰𝐭. % 5-10 
CuCN55 

𝐂𝟏𝟒𝐇𝟑𝟏𝐍𝐎 1.75 � 0.5 

 
Before the electrodeposition, the samples were degreased out by special silver degreasing chemical, and were 
rinsed by ion-free water. They were neutralized using 5% sulfuric acid solution and finally were washed by double 
rinsed ion-free water [4]. After this step, the samples were electro-deposited under the conditions listed in Table 
2. 

Table 2. Conditions for the Au-Cu electro-deposition 

Parameter Used range 
𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐞𝐧𝐬𝐢𝐭𝐲 ሺ𝐦𝐀 𝐜𝐦𝟐ሻ⁄  2-12  ሺ𝐦𝐀 𝐜𝐦𝟐ሻ⁄   

Bath Temperature )°C70 (-60 
pH11.5-12.5 

Agitation 50-175 (rpm) 
 
The pH of the solution was adjusted using 10% NaOH and 5%H2SO4. In this study , firstly, the parameters of 
direct and pulsed current density (with a working cycle of 10%), the concentration of gold and cyanide ions, the 
bath temperature, pH, agitation and the amount of additive for creating the  Au-Cu alloy layers containing  wt.% 
75 gold standard value were optimized by  one- factor- at- a- time method . Then, using a constant Au percentage 
in the alloy, the thickness of the layers was optimized by changing the different duty cycle parameters. Pulse on 
and off time parameters were set at 0.01 seconds [15]. Thickness measurement of formed layers was done by the 
SEM CamScan MV2300 scanning electron microscope equipped with EDXBruker XFlash6l10 in order to 
determine the percentage of elements in the alloy accurately. The exact amount of gold in Au-Cu alloy deposits 
was investigated by inducing the  coupler plasma spectrometry by  ICP-OES, Varian 710, and X-ray fluorescence 
XRF Fischer scope® X-RAY XAN® 220 diffraction compared 
 
3-Results and Discussion 
 
The values of the parameters obtained in the optimization of direct and pulsed current deposition are summarized 
in Table 4 in order to create the deposited layers with the value of 75% wt. Au in alloy. 
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Table 3. Optimized conditions electrochemical deposition of Au-Cu alloy with direct current and pulse with 10% working cycle for 
stabilization of wt. % 75 gold per alloy 

Additive 
  

ሺ
𝐦𝐥

𝐥
ሻ 

  
pH  

Temp  

C)(  

Agitation 
  

(rpm)  
  

𝐂𝐂𝐍ష 

ሺ
𝐠𝐫
𝐥

ሻ 

𝐂𝐂𝐮శ 

ሺ
𝐠𝐫
𝐥

ሻ 

𝐂𝐀𝐮శ 

ሺ
𝐠𝐫
𝐥

ሻ 

C.D 

ሺ
𝐦𝐀
𝐜𝐦𝟐ሻ 

  

1 22 66 10024 55 66 6 

In the electro-deposition of Au-Cu, the percentage of alloying elements and the thickness of the formed layer were 
influenced by various parameters, and in particular they were influenced by the current density. In fixed deposition 
conditions, if the same amount of current density was used, the pulse current would be increased significantly 
compared to direct current [7]. 

Figures 1 and 2 show the SEM image and EDS analysis of the cross section of Au-Cu deposited layers with direct 
and pulsed currents, both of which were identical in terms of optimal conditions and with a direct current density 

of 6 
mA

cm2 and the average thickness of the alloying layer which was about 82 μm and also with the 73.3 wt. % of 

gold. However, the average thickness of the layer produced by the pulse current was about 151 micrometers and 
with 74.4 wt. % of gold. 

     
 

Fig. 1 SEM image of the cross-section of deposited samples to measure the average thickness of the layers, 82 μm with direct current (a), 
151 μm with pulse current and 10% cyclic cycle (b). 

 

 
Fig. 2  EDS analysis of cross section of deposited samples to measure the amount of gold in the layers, wt. 73.3% by direct current (a) w / 

w% 74.44 with pulse current and 10% (b). 

Tables 5 and 6 show the effect of direct and pulse current on the mass of the layers, the percentage of gold, the 
current efficiency and thickness of the Au-Cu layers formed in the 240 minute period under optimum conditions. 

Table 4. The effect of direct current density on mass, gold percent and thickness of layer in 240 minute under optimum conditions 

𝛕 

(min)  

𝐓𝐚𝐯𝐠 

µm)( 

𝐓𝐭𝐡 

µm)(  

𝛒𝐚𝐥𝐥𝐨𝐲 

ሺ
𝐠𝐫

𝐜𝐦𝟑ሻ 

A  

ሺ𝐜𝐦𝟐ሻ 

Alloy (%) 𝐦𝐚𝐥𝐥𝐨𝐲 

(mgr)  

𝐂. 𝐃 

ሺ
𝐦𝐀
𝐜𝐦𝟐ሻ Cu  Au 

240 82 88 14.49 1 267 733 82.327  6 
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Table 5. The effect of average pulse current density on mass, gold percent and thickness of layer in 240 minutes under optimum conditions 

𝐓𝐚𝐯𝐠 

m)µ(  

𝐓𝐭𝐡 

m)µ(  

𝛕 

(min)  

𝛒𝐚𝐥𝐥𝐨𝐲 

ሺ
𝐠𝐫

𝐜𝐦𝟑ሻ 

A  

ሺ𝐜𝐦𝟐ሻ 

Alloy(%)  𝐦𝐚𝐥𝐥𝐨𝐲 

(gr)  

𝐈𝐚𝐯𝐠 

ሺ
𝐦𝐀
𝐜𝐦𝟐ሻ 

𝛉 

(%) 
Cu Au 

151 160 240 14.92 1 256  744 153.211 0.6 10  

 
The Au-Cu formed layers in the duty cycle of 30%, had a thickness of 0.841μm and also contained 74.4 wt. % of 
gold in the alloy, which was more than the amount of alloy gold obtained in some of the commercial processes of 
the jewelry and watch case electroforming [21]. In duty cycles more than 30%, a significant decrease was observed 
in the thickness of the Au-Cu alloy that was formed in the same conditions. Increasing the duty cycle meant 
reducing the off-time. If the pulse time was too short, the electrical double layer wouldn’t have enough growth 
opportunity, it would be very thin and in fact, there would be no difference using the mode of direct current [7].  
Figure 4 and 5 show microanalysis of SEM-EDX of all the electro-depositions with various duty cycles ranging 
20-90% of the samples cross sections that were at the same values of operation condition.  
 

 
Fig.4. EDS micrographs of Au-Cu alloy analysis in the electro-deposits (a to h) at same operation condition, at 20% duty cycle contents 
73.2% Au(a) 30% duty cycle contents 74.4% Au (b) 40% duty cycle contents 73.5% Au (c). 50% duty cycle contents 72.7% Au (d) and 
60% duty cycle contents 74.3% Au (e) 70% duty cycle contents 73.1% Au (f) 80% duty cycle contents 72.7% Au (g) and 90 % duty cycle 
contents 74.0% Au (h). 
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Fig.5. SEM cross section images of Au-Cu alloy (a to h) at same operation condition, at 20% duty cycle contents 162μm (a) 30% duty cycle 
contents 202μm (b) 40% duty cycle contents 174μm (c). 50% duty cycle contents 167μm (d) and 60% duty cycle contents 166μm (e) 70% 
duty cycle contents 165μm (f) 80% duty cycle contents 136μm (g) and 90 % duty cycle contents 117μm (h). 

 
As the data shown in Table.7, the influence of pulse duty cycle variation was investigated on the metals 
percentage, deposits mass, thickness and current efficiency of the gold-copper heavy electrodeposition with 
current density of 6 mA /cm2. Table.7 shows that the percentage of gold-copper alloy (74.4% Au and 25.6% Cu) 
in the layer was acceptable and heavy electro-deposition rate increased significantly in the optimum duty cycle 
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(θ=30%). This was confirmed by the results of influence of pulse duty cycle on the deposition rate compared to 
the calculated ones (Table.7). As duty cycle increased, deposition rate decreased. This was attributed to less 
amount of off-time at higher duty cycle [16]. Therefore, less time is provided for atoms to transfer to a stable 
position during off-time [22]. 
 
 

Table 6. Influence of duty cycle (%) variation on pulse electro-deposition mass, deposition rate and composition of gold-copper alloy, and 
comparison of experimental values of the deposition thickness with calculated values. 

𝐑𝐚𝐯𝐠  

ሺ
µ𝐦
𝐦𝐢𝐧

ሻ 

𝛕 

(min) 

𝐓𝐚𝐯𝐠 

m)µ(  

𝐓𝐭𝐡 

m)µ(  

  

𝛒𝐚𝐥𝐥𝐨𝐲 

ቀ
𝐠𝐫

𝐜𝐦𝟑ቁ 

  

A  

ሺ𝐜𝐦𝟐ሻ

Alloy (%)  𝐈𝐚𝐯𝐠 

(
𝐦𝐀

𝐜𝐦𝟐) 

𝐦𝐚𝐥𝐥𝐨𝐲 

(gr) 

 𝛉 

 % 

Cu Au 

0.363 

0.679 

0.841 

0.725 

0.695 

0.687 

0.683 

0.566 

0.487  

240 

240 

240 

240 

240 

240 

240 

240 

240 

82 

163 

202 

174 

167 

166 

165 

136 

117 

88 

173 

210 

184 

174 

173 

172 

144 

124 

14.49 

14.74 

14.90 

14.79 

14.65 

14.90 

14.74 

14.65 

14.91  

1 

1 

1 

1 

1 

1 

1 

1 

1 

267 

267 

256 

265 

273 

257 

269 

273 

260 

733 

732 

744 

735 

727 

743 

731 

727 

740  

6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6  

0.127 

0.255 

0.313 

0.272 

0.254 

0.258 

0.254 

0.211 

0.185  

10 

20 

30 

40 

50 

60 

70 

80 

90 

 
 
Electro-deposition with 30% duty cycle was selected as the optimal duty cycle due to the highest percentage of 
gold (74.4% wt.) and its closeness to 75 wt.%. Figure 5 shows the variations in the values of the various duty 
cycles with the percentage of gold in the treated layers. 
 

 

 
 

Fig. 5 The variations of various duty cycles on the percentage of gold in the Au-Cu layer 

Figure 6 shows the variation of different values of the duty cycle with the deposition rate of the Au-Cu alloy in 
the deposited layers. 
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Fig. 6 The variations of different values of the duty cycles on the of Au-Cu electro-deposition rate.  

As can be seen in Table 8, there were differences among the Au values in each sample. In case  of the comparison 
of analytical techniques (ICP-OES and XRF), there was no  statistical difference between the two methods 
regarding Au content, This means that using both equipment was possible  to analyze the Au in gold alloys, but 
the ICP-OES apparatus was more accurate and precise than XRF method [23]. 

Table 7. Paired-data test between the results of ICP-OES and XRF techniques for Au content. 

% Duty Cycle 

 

Au (part per thousand) Paired Test ICP-OES 
and XRF Differences 

ICP-OES XRF 

Direct Current 

10 

20 

30 

40 

50 

60 

70 

80 

90 

744.1 

739.9 

732.3 

744.8 

735.4 

726.9 

743.6 

731.2 

726.6 

739.8 

742.0 

739.7 

729.9 

749.6 

741.4 

740.0 

740.3 

746.1 

735.0 

745.1 

1.7 

0.2 

2.4 

- 4.8 

- 6.0 

- 13.1 

3.3 

- 14.9 

8.4 

5.3 

 

4. CONCLUSIONS 

According to the results of this study, obtaining the necessary thickness of gold-copper electro-deposited layers 
for making gold alloy artifacts was possible to be faster rather than conventional D.C. electro-deposition by using 
pulse current. Pulse electrodeposition of gold-copper was a repeatable and controllable technique to prepare a 
layer with a certain composition of gold and copper. In this method, the pulse parameters (duty cycle percentage 
and average current density) and operation condition (gold and cyanide concentration, temperature, pH and 
agitation of the alloy gold bath) variations` effects were investigated. In heavy electro-deposition of gold-copper, 
LDAO could be used as a suitable surfactant to provide a thick gold alloys deposit at acceptable karat and 

deposition rates. It was found that at pulse current density by the constant value of 6 ሺ
mA

cm2ሻ and 30% duty cycle, 

the best amount of gold was obtained and highest rate of deposited layer was observed on the silver cathodes. 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Duty Cycle ሺ%ሻ 

D
ep

os
it

io
n 

R
at

e 
(ఓ






ሻ
 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Hamid Babaei et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i2/191102107 Vol 11 No 2 Apr-May 2019 287



Duty cycles above 30% led to lower rates of the depositions. Also, it has been observed that the experimental 
deposition rate and current efficiency of D.C. electrodepositions were lower than those of pulse electro-deposition. 
In order to improve the %weight of gold in deposited layers, it was recommended to apply this method with gold-
silver. 
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