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Abstract - One of the most relevant aspects in the performance of wireless cognitive communications is 
the interference between users, especially the one that the secondary user can cause to the primary user. 
A proactive handoff strategy considerably reduces said interference. However, highly accurate prediction 
models are required. The following article seeks to compare the performance of four algorithms in the 
spectral occupancy of the primary user during a secondary user’s communication. The performance of 
the algorithms is assessed by using five metrics: handoffs, failed handoffs, bandwidth, delay and 
throughput. The simulation scenario involves the communication of a secondary user during 10 minutes 
in a Wi-Fi network. 

Keywords - Genetic Algorithms, Logistic Regression, Markov Chains, Naive Bayes, Spectrum Prediction, 
Wireless Networks. 

I. INTRODUCTION 

The trending growth of applications, the scarcity of the radio electric spectrum and its underuse are current 
problems of wireless networks, which have fostered the use of strategies for dynamic and optimal access of the 
spectrum [1]–[4]. Cognitive radio (CR) is a promising approach that includes efficient and adaptive 
methodologies for the dynamic spectrum allocation (DSA) of existing radio [2], [5], [6]. In contrast with 
traditional networks, there are two types of users in cognitive radio: the primary user (PU) that pays for the 
frequency band and the secondary user (SU) that uses spectral spaces in an opportunistic manner when they are 
not being used [7]–[9]. 

Joseph Mitola III coined the concept of CR in 1999 as “the point in which wireless Personal Digital 
Assistants (PDA) and the related networks are smart enough in computational terms in comparison to radio 
resources and the corresponding communications from one computer to another. They must be able to detect the 
user needs as a function of the context of use and offer radio resources and wireless services which are more 
suitable in that particular instant.” [10]. 

The process in which the SU changes from one frequency channel to another is called spectral handoff where 
it is inevitable that the communication between users is temporarily cut off. There are various techniques to 
minimize the effect of this characteristic. This work describes four methodologies based on probabilistic models, 
regression models and evolutive artificial intelligence [11]. 

Due to their mathematical formality, performance in prediction scenarios and the complexity imposed by 
traditional techniques, Markov chains and Naïve Bayes are chosen as probabilistic models [12], [13]. The 
Logistic Regression model is also selected since it involves the simultaneous use of several explicative variables 
and shows good performance in the prediction of regression models [14], [15]. Seeking to optimize the spectrum 
allocation for better performance, the genetic algorithm is incorporated as an evolutive artificial intelligence 
technique. Previous investigations have revealed a superior performance of this method in comparison to others 
[16]. The comparison strategy establishes five metrics: handoffs, failed handoffs, bandwidth, delay and 
throughput. Performance is assessed based on the simulation of a 10-minute communication for a Wi-Fi 
network. 

The article is organized in five sections beginning with an introduction. The second section describes the 
generalized mathematical model for each strategy. The third section describes the chosen methodology. The 
fourth section presents the results obtained. Finally, the fifth section draws a set of conclusions. 
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II. SPECTRAL HANDOFF 

The mobility of the spectrum or handoff can be defined as the process in which a cognitive radio user 
(secondary user) changes its operation frequency, when the conditions of a channel are worsened or when a 
primary user (PU) appears since the former is using a licensed channel [7], [8]. 

A. Causes and requirements of spectral handoff 

The need to carry out spectral handoff in cognitive radio networks can be explained by one of the following 
causes [17]: 

 A primary user (PU) is occupying the target channel. In proactive strategies, the backup channel is 
chosen beforehand and its occupation status is not verified when changing channels. This means that a 
secondary user (SU) can find the channel to be occupied by another secondary user or by a primary user. 

 Arrival of a PU to a channel occupied by the SU: During the data transmission of a SU in a licensed 
channel, a PU can arrive and demand the immediate availability of said channel. 

 The channel occupied by the SU is downgraded: Even without the existence of a PU, it is possible that 
the SU must change channel due to the downgrade of quality in the channel that is currently under use. 

 The SU interferes with the PU: Spectral handoff is necessary when the opportunistic use of a licensed 
channel by a SU interferes with the activity of the PU. 

 Traffic variation: If the amount of traffic in the frequency band significantly increases, it is possible that 
the SU requires changing channels while seeking the balance of the load and guaranteeing better 
performance levels. 

 Movement of the SU: If the SU moves geographically outside the coverage area of the node in a 
centralized system, spectral handoff is necessary. 

B. Requirements of spectral handoff 

Spectral handoff can affect the performance and quality of the service in cognitive radio networks. Therefore, 
there are some requirements involving spectral handoff [18]: 

 Speed: The delay in spectral handoff must be sufficiently small to avoid quality downgrade or 
interruption of communication. 

 Handoff rate: A high number of unnecessary changes of channel directly affect the performance of data 
transmission so the handoff rate needs to be minimized. 

 Reliability: Minimizing the effect of handoff in service quality. For instance, in mobile networks, the 
probability of blocking new calls and the probability of dropping current calls must be minimized as well 
as balancing traffic in adjacent cells. 

 Signalization: It is important to minimize signalization since a high volume of signalization can affect the 
performance in communication. 

 Success: Channels and resources must be available to guarantee successful handoff [19]. 

 Multiple criteria of handoff: The new access network must be selected in an intelligent manner based on 
multiple criteria since choosing the best spectral opportunity can avoid multiple handoffs [19]. 

C. Phases and procedure of spectral handoff 

The fundamental purpose of any spectral handoff model is the transmission from one frequency to another one 
with the minimum degradation of quality [20]. Spectral handoff is developed based on three phases [21]: 
measuring, decision-making and execution. 

 Measuring: This phase includes the discovery of wireless networks and the detection of spectral 
opportunities in said networks. This can be achieved through a centralized or distributed approach. 

 Decision-making: In this phase, the decision of when and where to perform spectral handoff is made 
based on multiple criteria and chosen metrics. 

 Execution: In this phase, the transfer from the current connection to the new one is carried out keeping in 
mind the previously mentioned requirements of spectral handoff. 

The procedure of spectral handoff assumes that the secondary users SU1 and SU2 communicate in channel Ch1. 
SU1 detects it and prepares to perform spectral handoff. SU1 pauses its current communication within a 
predefined duration. The SU2 is also notified of the interruption before another fixed time interval. Afterwards, 
SU1 and SU2 resume communication in the selected channel Ch2 or in the same channel Ch1. Finally, since a 
stack of data can be interrupted many times during transmission, spectral handoff can be executed on repeated 
occasions.  
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D. Impact of spectral mobility in Cognitive Radio 

Spectral mobility has a significant impact in the performance of cognitive radio. According to the spectral 
planned handoff strategy, the performance of cognitive radio networks can be affected by any of these factors: 
latency, throughput, reliability, signalization, PU interference, energetic efficiency, bandwidth, SINR, quality of 
service and error rate. 

 Latency: The magnitude or latency increases with reactive handoff strategies due to the detection time of 
spectral opportunities. 

 Throughput: The value of the effective data rate is reduced due to the capacity of the channel of the 
frequency band selected in the spectral handoff strategy. 

 Reliability: An inadequate decision-making process in the spectral handoff strategy can contribute to a 
higher imbalance of the data traffic load in the CRN. This can affect the parameters of quality of service 
such as the probability of blocking new calls and the probability of dropping current calls.  

 Signalization: According to the spectral handoff strategy, the amount of information related to 
signalization can increase considerably, especially in Common Control Channel (CCC) strategies. The 
amount of additional information reduces the effective data transfer rate. 

 PU interference: Reactive strategies of spectral handoff always cause temporary interference to the PU, 
which is proportional to the detection time of spectral opportunities of the SU. The decision to increase 
the transmission power in order to increase throughput also increases the interference caused to the PU or 
SU in adjacent frequency channels. 

 Energetic efficiency: The execution of complex algorithms, the unnecessary increase of transmission 
power and the prolonged detection time, among other factors, contribute to the reduction of energetic 
efficiency of the SU. 

 Bandwidth: Using multiple frequency channels for the transmission of a single PU can be beneficial for 
bandwidth but can also reduce the potential bandwidth of other SU if there is no metric that serves right 
the network traffic. 

 SINR: An improper decision-making process in the spectral handoff strategy can affect the SINR of both 
the SU and the PU. The previous situation can be explained by a poor choice of channel, an increase in 
the transmission power, the chosen transmission mode and poor balancing of loads. 

 Quality of service: A poor choice of frequency channel in the spectral handoff strategy can lead to delay-
sensitive applications with low QoS and QoE parameters. 

 Error rate: In data communication, the error rate is a function of the following parameters; operation 
frequency, modulation, transmission power and communication technology, etc. The spectral handoff 
strategy must redefine certain parameters when changing channels. 

III. MODELS 

A. MARKOV Chain 

In order to define a Markov chain five elements are required to define, transition diagram, states and state 
spaces, transition, probability of transition, and representation. 

Markov chains are a spherical technique that is based on the analysis of the internal dynamics of the system, 
simulating the prediction of the real state at a given time from the previous states. It is a random process with 
the property that gave the true value of the process Xt, the future values Xs for s>t are independent of the past 
values Xu for u<t. 

The states are the characterization of a system at a given instant; formally it is a variable whose values can 
only belong to the set of states of the system. The state space is a sequence of random variables X = {Xn: n ≥ 0}, 
which take values in a finite or countable set ε, for all n and any states i0, i1,. . . , in, j in ε that satisfies the 
Markov condition (equation (1) and (2)). 

 1 1 0 0 , ...,ij n n n nP P X i X i X i      (1) 

 
1 1 1n ni j n n n nnP P X i X i
      (2) 

The probability that Xn+1 is in state j since Xn is in state i is the transition probability (equation (3)) in one 
step from i to j and is denoted as Pin jn+1. 

 
1 1n ni j n nP P X j X i
     (3) 
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The transition probabilities depend on the states and the instant at which the transition is made. When 
probabilities are independent of time (they are not a function of n) the chain has stationary transition 
probabilities and is known as a homogeneous chain in the time (equation (4) and (5)). 

1n ni j ijP P

  (4) 

   1 1 0n nP X j X i P X j X i n        (5) 

The Pij values are referred to as the transition probability and satisfy a probability distribution (equation (6)). 

1

1,  0,  0
m

ij ij
j

P i P


     (6) 

All values are combined and form the transition matrix T of size m x m (equation (7)). 
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 (7) 

B. Logistic Regression Algorithm 

The main advantage of logic regression is that it can use diverse explicative variables at the same time. 
Although it may seem trivial, this characteristic is important due to the great interest on knowing the impact of 
these variables over the response variable. If the explicative variables were examined independently, ignoring 
the covariance between variables could lead to confusion. 

One logistic regression will model the probability of the result based on individual characteristics and is given 
by the equation (8). 

0 1 1 2 2log ...
1 m mx x x
    


        
 (8) 

π is the event probability, βi are regression coefficients associated with the reference group and the xi are the 
explicative variables. The concept of the reference group β0 constitutes the individuals with a reference level for 
each variable x1, x2, ..., m.  

For the specific case of the present research, the following explicative variables were defined: the signal-to-
interference-plus-noise ratio (SINR), the availability (PD) and the average availability time (TED) since they are 
all related and their simultaneous use is required in the prediction of the channel availability. Therefore, 
equation (8) would turn into equation (9). 

0 1 1 2 3log
1

PD TED PSINR
    


       
 (9) 

C. Genetic Algorithms 

Genetic algorithms are optimization models that emulate genetic and evolutive processes. The basic model 
consists of an initial population and a set of operations defining the interaction of said population as well as the 
descending generations. According to the optimization model shown in equation (10), simple genetic algorithms 
are used to solve optimization problems that include continuous parameters [22]–[25]. 

 
1 2min  ( , ,... )

, ,   ,   1,...,
k k kn

ki i i i i i

f z z z

z l u l u n    
 (10) 

The population consists of individuals represented by a binary number. This representation is known as a 
chromosome where each bit in the chromosome is called a gen. Genetic algorithms are often characterized by 
these five concepts: allele, gen, chromosome, position and index. Figure 1a shows the graphical representation 
of a specific population. 

From a systematic standpoint, generations can be considered as iterations that lead to the evolution of initial 
populations into new populations born with better genetic material. New generations are the result of three 
operators acting on the current population: selection, crossover and mutation [22]. 
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The selection is the most impactful operation and it is in charge of transmitting the genetic code from the 
most fitted individuals to future generations. A new population called intermediate is generated from the current 
population and it must have the same initial size. However, genetic structure must be diverse so it does not only 
take the best codes but it also transmits a number of codes with lower performance. Algorithmically, there are 
diverse selection methods [23]–[26]: 

A crossover or crossing operator involves choosing two ‘parent’ chromosomes and assigning a crossing point 
to them. Then, the crossing is carried out between the chosen individuals in order to create new combinations 
labelled as children. The sexed operator allows the exchange of genetic material for the production of new 
descendants. The plan is to match parents that have different genetic codes. Figure 1b evidences the matching 
perform with the crossing operator for two individuals chosen at random [27], [28]. 

The mutation operator is irrelevant in simple genetic algorithms with low mutation rates. Mutation is carried 
out through the random-based modification of the genetic pool of a population to a certain degree. Low 
mutation rates assure that new populations vary slightly compared to the genetic code of previous populations 
[28], [29]. 

 
(a) 

 
(b) 

Fig 1. (a) Genetic equivalents for a specific population, (b) Crossing operator [23] 

D. Naïve Bayes algorithm 

To choose the prediction model it is paramount to keep in mind that it has multiple characteristics and criteria 
for further improvement. The training process of prediction models may factor in information such as the 
availability probability (AP) and the average availability time (AAT), as well as other metrics. 

Thus, by considering the Naïve Bayes theorem, the independent variables (also known as predictors) would 
be the availability probability and the average availability time whereas the dependent variable would be the 
channel availability. Hence, the Naïve Bayes prediction model works adequately in terms of predicting various 
classes assuming that there is independence between them. 

A Naïve Bayes classifier essentially assumes that the presence of one specific characteristic does not imply 
the presence of other characteristics. Even when one these characteristics mutually depends on each other or one 
depends on the existence of another one, their properties contribute independently. This facilitates the operation 
on large datasets and can even surpass the capacity of highly sophisticated classification methods. 

The Bayes theorem defines the calculation of the posterior probability P (b | z), P(b), P(z) and P (z | b) as 
shown in equation (11). 

     
 

P b z P b
P b z

P z
  (11) 

Where, 

P (b|z) is the posterior probability of class c (c, target) given the predictor (x, attributes) 

P (b) is the previous probability of the class 

P (z|b) is the predictor’s probability given the class 

P (z) is the predictor’s probability 

Based on equation (1), considering the independent variables AP and AAT and the dependent variable of 
channel availability (denoted as either occupied or available) leads to equations (12) and (13).  

       P busy P TED busy P PD busy
posterior busy

evidence
  (12) 
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       P vacant P TED vacant P PD vacant
posterior vacant

evidence
  (13) 

The evidence term is then defined in the form of equation (14). 

     
                       

evidence P busy P TED busy P PD busy

P vacant P TED vacant P PD vacant

 
 (14) 

IV. METHODOLOGY 

To assess the performance of the discussed algorithms: Markov model, Logistic Regression, Genetic algorihms 
and Naive Bayes, five assessment metrics are described in Table I. 

TABLE I.  Evaluation Metrics Used for the Evaluation of the Proposed Algorithms. 

Name Description 
Type of 
Metric 

Handoffs  
It corresponds to the total handoffs during the 10-minute 
transmission. 

Cost 

Failed handoffs  
It is the number of handoffs that the SU could not 
materialize because the SU found the respective targeted 
channel occupied. 

Cost 

Bandwidth 
It is the average bandwidth of the communication during 
the 10 minutes of transmission of the SU. 

Benefit 

Delay  
It is the accumulative delay of the communication during 
the 10 minutes of transmission of the SU. 

Cost 

Throughput 
It is the accumulative Throughput of the communication 
during the 10 minutes of transmission of the SU. 

Benefit 

To analyze the performance for each handoff-related component, a simulated environment progressively 
reconstructs the behavior of spectrum occupancy based on data traces captured within the Wi-Fi frequency band. 
These can assess the behavior of PUs and validate the performance of each handoff variable. The spectral 
occupancy data is a week-long observation registered in the city of Bogota, Colombia [30]. 

V. RESULTS 

The Fig. 2 to Fig. 6 show the performance of the metrics for the Wi-Fi network: handoffs, failed handoffs, 
bandwidth, delay and Throughput. 
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Fig. 2. Handoffs 
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Fig. 3. Failed handoffs 
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Fig. 4. Bandwidth 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Cesar Hernández et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i6/181006034 Vol 10 No 6 Dec 2018-Jan 2019 1617



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

Data (kB)

A
cc

u
m

u
la

ti
ve

 a
ve

ra
g

e 
d

el
ay

 (
s)

 

 

Genetic Algorithms
Logistic Regression
Markov chains
Naive Bayes

 
Fig. 5. Delay 
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Fig. 6. Throughput 

Table II summarizes the performance of each algorithm in the cost assessment metrics (handoffs, failed 
handoffs and delay) with the maximum values obtained in figures 1, 2 and 4. Based on the obtained results, it is 
determined that the model with the best performance is the Markov chain model, while the second place goes to 
the Logistic Regression method and the third place goes to the Naïve Bayes method. Finally, the worst 
performance corresponds to the Genetic Algorithm. 

By comparing the best results with the lowest ones, there is an increase of 2.8 times in the metric of failed 
handoffs, 2.5 times for the total number of handoffs and twice for the delay. For the intermediate metrics 
(Logistic Regression and Naïve Bayes), their relations are proportional and indicate ratios of 1.85 times in 
comparison with the Markov model. 

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Cesar Hernández et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i6/181006034 Vol 10 No 6 Dec 2018-Jan 2019 1618



TABLE II.  MAXIMUM VALUES FOR THE HANDOFFS, FAILED HANDOFFS AND DELAY. 

 Failed handoffs Total handoff Average delay 

Markov Chains 54 325 69.11 

Logistic Regression 100 438 86.5 

Naïve Bayes 108 474 92.97 

Genetic Algorithms 152 729 142.9 

For the bandwidth metric (Figure 3), the Logistic Regression, Naïve Bayes and Markov chains show 
variations between 1078 kHz and 1253 kHz, detecting the lowest range in the Markov chains. During the 10 
minutes of transmission, Genetic Algorithms have the lowest limits of average bandwidth since the range varies 
between 793.8 and 954.5 Hz. 

For the throughput metric, Genetic algorithms have the lowest limits, varying between 5632 and 5105 kps. 
The strategies of Logistic Regression, Naïve Bayes and Markov chains show similar behaviors for times 
exceeding 5 minutes. Their most representative variation occurs in the first minute: 7117 kbps for Markov, 8047 
kbps for Logistic Regression and 8239 for Naïve Bayes. 

VI. CONCLUSION 

The metrics obtained for each strategy reveal that although Genetic Algorithms have the worst performance 
in all metrics, no algorithm has the best performance for all metrics. However, by pondering the results, it is 
determined that the Markov algorithm has the best relative performance. 

The trending growth of wireless applications sets new challenges for future wireless communication systems 
and spectral handoff strategies, especially the predictive strategies, which are tools that establish methodologies 
to improve spectral efficiency, by maximizing relevant parameters of the communication system such as quality 
of service, delay, throughput, reliability, energy efficiency, bandwidth, SNR and, last but not least, interference. 
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