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Abstract - The most used practice for food preservation is the dehydration, in particular, the heat-air 
dehydration which is theoldest method used nowadays. In this work, a mathematical model was 
developed to describe this behavior, always working in the linear region of the process of dehydration. 
The model proposed was implemented in MATLAB software with the Simulink tool and evaluated with a 
simulation CFD in SolidWorks. The behavior of the analytical model compared with the CFD simulation, 
showed a high variation for the values of final moisture in the food. This is due to the initial restrictions 
made for the model, especially, assume that the temperature inside the chamber is homogeneous. The 
model allows to vary all the features of the system and identify the behavior during the process. 
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1. Introduction 

The heat-air dehydration is one of the most used methods in the food industry, because of the relation of cost-
profit that is obtained by implementing it in the small production systems[1]. This model implies use a hot air 
flux at high temperature, which going extracting the moist in the food by evaporation. In this condition the food 
is subject to temperatures of 30°C y 70°C and final moistures content of 10%-2% wet-basis[2]. 

Nowadays, exist semi-empiric models that approach the dynamics dehydration based on numeric methods.Some 
examples are : Hii-Law-Cloke model, which is implemented to describe the dehydration of cocoa, making a 
combination of two standards (Page and two-term models)[3], the logarithmic, which is the best representation 
applied to apple pomace[4]and  the CFD, where besides of general studies, specific and more detailed analysis 
canbe made[5].These models have a disadvantagewhen it comes to scale or apply to other systems,because these 
are closely related to the studyphenomenon. 

Also, exists alternatives that are product of the new tools like computational neural networks or the fuzzy-logic 
algorithms [6], which have a highest approach to the behavior as long as data or computational resource be 
enough. otherwise, the application of this alternatives is reduced to laboratory or pharmaceutical industries[7]. 

An analytical model is a simple approach, focused in a resolution of the problem using ordinary differential 
equations (ODE). The ODE’s have an advantage when it comes of speed and variability of their 
features[8],being more useful when it does not have a practical experiment available or when environment 
change[9].  

2. Materials and Methods 

The hot-air dehydration is a method that use flux of air at high temperatures, frequently above the ambient, to 
extract moisture by evaporation.  This systems are described for phenomenon of mass transfer and energy 
transfer, Fick’s Law (Ec. 1) and  Furrier Law (Ec. 2), respectively[10].  

ܬ ൌ െܦ
ܥ݀

ݔ݀
 (Ec. 1) 

  

ሶݍ ൌ െ݇
݀ܶ

ݔ݀
 

(Ec. 2) 

  

Where D is the diffusivity of fluid and k is the material conductivity. The heat transport is the dominant process 
for this dehydration, therefore, the flux corresponds to a convective transfer. Which is defined by developing the 
Furrier law (Ec. 1), how is presented in the equation (Ec.3). 

ሶݍ ൌ  (Ec. 3)  ܶ∆ܣ݄

  

Where ݄ܣis the thermal resistivity that faces the heat flux due to the gradient of temperatures ∆ܶ.  
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