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Abstract—In the following article, an exergetic analysis of a microturbine operating with a regenerative 
Brayton cycle was carried out in order to identify the variation in exergy and exergy destruction 
behaviour generated in each component of the system by comparing these results to different 
microturbine loads. The study was carried out on a Brayton cycle with cogeneration which is composed of 
a compressor, combustion chamber, gas turbine, HRSG and an air preheater. In which the output power 
of the turbine was varied for the five case studies starting at 25kW to 45kW. As the study is carried out, 
at 45kW the greatest exergy is consumed and in the combustion chamber it is the one that contributes 
most to the destruction of exergy, adding up to an average of 36.5% of the total destroyed. With this it 
was shown that the increase of the power output of the turbine increases the needs of each component of 
the system and also increases the exertions of the system. 
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I. INTRODUCTION 

One of the thermodynamic cycles used for power generation is the Brayton Cycle, which uses gas, diesel or 
light fuels as fuel. These cycles have been studied in order to improve their performance[1–4]. In these cycles 
the simulation performance has been improved, modifying some parameters such as mass flow in the 
equipment, in order to achieve maximum power and less exergy destruction[5].  

In the case of a regenerative Brayton cycle, where the difference with the original is that the flow of hot air does 
not fully expand to atmospheric pressure before entering the regenerator, the improvement obtained has allowed 
to achieve a thermal efficiency between 12% and 26%[6]. In addition, it has been demonstrated that the 
dimensionless power of the cycle can be optimized by looking for both the optimum heat transfer distributions 
between the hot and cold side of the heat exchanger and the optimum pressure ratio between the equipment[7]. 
However, all the proposed improvements found for these systems lead to smaller engine components such as 
compressors, turbine, regenerator and heat exchanger[8]. 

In addition, other studies have made it possible to optimize the entropy generation rate by 70% through the use 
of an ecological optimization function, bringing power generation close to the maximum capacity of the 
equipment defined by its design conditions[9]. 

One criterion for optimising Brayton cycles is the thermosetting analysis[10–12], where the total cost analysis 
takes into account the cost of fuel, investment, environment, operation and maintenance, as well as 
irreversibilities due to finite rate heat transfer, internal dissipations and pressure drops[13]. This criterion under 
the thermo-economical approach was used in a gas power generation system, allowing to identify an optimal 
point of operation where an efficiency of 71% of the maximum power was reached by means of multiple 
objective optimization functions, an exergy destruction of 24% lower and 67% less in the total cost with respect 
to the standard operating conditions[14]. 

Exergetic analysis as a means of searching for improvement opportunities is an important method of cycle 
optimization that has been widely used for different processes[15–17].In the same way, for a new configuration 
of the proposed regenerative Brayton cycle, an exergy analysis was performed, the performance of the new 
configuration was investigated and optimized, and the optimum cooling pressure was determined [18]. In 
addition, the use of exergetic analysis allows us to evaluate the feasibility of integrating a closed combined cycle 
based on Brayton cycles with a solar power plant, resulting in exergetic efficiencies of over 70% [19]. 

Therefore, the main contribution of this work is to present the results of applying an exergetic analysis of a 
microturbine operating with a regenerative Brayton cycle, in order to identify the variation of exergy destruction 
behaviors and exergy generated in each component of the system, by comparing these results to different loads 
of the microturbine. 
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For ideal gases, the analysis of entropy between two states is governed by equation (5). 

ሺݏ̅ ଶܶ, ଶܲሻ െ ሺݏ̅ ଵܶ, ଵܲሻ ൌ ሺ°ݏ̅ ଶܶሻ െ ሺ°ݏ̅ ଵܶሻ െ തܴ ∙ ݈݊
మ

భ
. (5) 

According to the third law of thermodynamics entropy at the same temperature and any pressure for ideal gases 
is determined according to equation (6). 

,ሺܶݏ̅ ܲሻ ൌ ሺܶሻ°ݏ̅ െ തܴ ∙ ݈݊


ೝ
.         (6) 

Exergy can be divided into physical exergy (݁ுሻ, potential exergy ሺ்݁ሻ, kinetic exergy ሺ݁ேሻ and chemical 
exergy ሺ݁ுሻ and omitting nuclear, magnetic, electrical and surface tension effects its equation (7) The total 
exergy specified in units of mass is. 

݁ ൌ ݁ு  ݁ே  ்݁  ݁ு.      (7) 

The physical exergy of a closed system in a specific state is given by equation (8), where h and s denote, 
respectively, the enthalpy and entropy of the system in the specific state, ݄ and ݏ are the values of the same 
properties when the system is in a restricted dead state. 

ுܧ ൌ ሺ݄ െ ݄ሻ െ ܶሺܵ െ ܵሻ.(8) 

The chemical exergy of a mixture of gases, which are present in the gaseous phase of the environment, can be 
obtained by means of equation (9). 

݁ିு ൌ െܴതതതത ܶ ∑ ݔ ݈݊
௫ೖ


௫ೖ
.(9) 

III. RESULTS AND ANALYSIS 

One of the parameters analyzed was the physical exergy which was studied in each of the states of the plant. 
Figure 1 shows a comparison of physical exergy in each state. 

 
Figure 2. Physical exergy for states 

In addition, the physical exergy is shown for each power ranging from 25kW to 45kW. It was possible to 
observe that in the first state there is no exergy due to the fact that it is air at room temperature and therefore 
does not present an energetic potential. On the other hand, in state four a peak of exergy is observed since in this 
state the gases have just left the combustion chamber having here if higher temperature, this thermal condition is 
reflected in a great available energy which is used in the process of the plant. The increase of this temperature is 
a determining point for the design of these cycles, this is due to the fact that as the temperatures handled by the 
plant increase, the demands on the materials with which they are built increase and the costs of assembling the 
plant also increase.On the other hand, chemical exergy was also a parameter that was reviewed in the study. In 
states 4 to 7 the chemical exergy maintains the value reached after leaving the combustion chamber as shown in 
Figure 3. 
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Figure 3. Chemical exergy for states 

This result is due to the absence of a subsequent chemical reaction which can cause a decrease in chemical 
exergy. In addition, this figure shows the highest peak of chemical exergy in state 10 being this state where 
methane is injected into the combustion chamber. These values are multiplied by a factor of 10-² for better 
visualization in the figure. 

In the same way, the values of total exergy in each of the states were reviewed, this value is given by the sum of 
chemical and physical exergy. Figure 4 shows two high peaks due to the influence of high chemical exergy in 
state 10 due to the energy potential of methanol and physics in state 4 due to the increase in temperature 
generated by the passage of methanol through the combustion chamber. 

 

Figure 4. Total Exergy for states 

Similarly, the exergy destruction obtained in each component was analyzed and a comparison is made with the 
total destruction of the components as shown in Figure 5. 
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Figure 5. Exergy destroyed for output 

The component that most contributes to the destruction of exergy is the combustion chamber. This destruction is 
presented in this component due to the transformation of the energy potential into methanol which is used to 
generate an increase in the temperature in the chamber. Adding up an average of 36.5% of the total destroyed 
exergy, its contribution to the destruction is very significant. This component shows its highest peak at 45kW. 

Finally, Table 2 showed how fuel flow needs changed in each of the case studies. An increase proportional to 
the change in output power was observed, and as always the air flow was on average 1.72% lower than that of 
the products. 

Table 2. Mass flow per power output 

Power (kW) Product flow Air flow 

25 77,3454 76,0115 

30 92,8145 91,2139 

35 108,2836 106,4162 

40 123,7527 121,6185 

45 139,2218 136,8208 

IV. CONCLUSIONS 

In conclusion, this study showed how the increase in turbine output power increases the needs of each 
component of the system. Parameters such as fuel mass flows increase and the temperature handled by the 
system components increases, which is critical for the design considerations of the system. In addition, it is 
observed that as the power generated increases, both the chemical exergy in the fuel and the physical exergy 
after combustion increase proportionally, due to the increase in the mass flows previously mentioned. It is hoped 
that the results of this study will serve as a basis for further research focused on the Brayton cycle with 
microturbines.  
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