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Abstract - This paper presents a finite element formulation for the determination of the critical buckling 
load of unified beam element that is free from shear locking using the energy method. The formulated 
element is used for the determination of the critical buckling load of beams with different boundary 
conditions. The developed formulae for the determination of critical buckling load are based on the effect 
of shear deformation. Numerical results for the critical buckling load of the classical Euler-Bernoulli 
beam and Timoshenko beam are presented and compared with the exact solutions. 

It is shown that the proposed technique provides a unified approach for the stability analysis of beams 
with any end conditions. It is concluded that for design purposes, shear deformation may be safely 
ignored for beam span-to-depth (l/d) ratio greater than 10, while for l/d ratio of 5 and less, shear 
deformation effect is significant and should be accounted for. 
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1.0 Introduction 

Beams as structural members are of interest in many engineering applications. Some of the applications include 
structural frames, pile foundations, grillages, and spread footings supported on groups of piles. The Euler-
Bernoulli theory considers the displacement of beams without shear effects. This approach gives appropriate and 
acceptable response in slender beams, in which shear effect is insignificant. The Timoshenko beam theory, on 
the other hand, is known to be superior to the Euler-Bernoulli beam model in predicting the transient response of 
beams, [1].  The Timoshenko beam theory employs a more accurate representation of beam flexure which 
allows for the inclusion of shear strains and is therefore more suited for thick beam analysis. Present 
conventional and most shear deformable beam finite elements may give acceptable results in solutions of 
particular problems but require substantial mesh refinement to achieve convergent solutions in others and as 
such fail in generality.  

It has been observed that the use of linear shape functions to represent transverse deflection, w, and cross-
sectional rotation, θ, in a Timoshenko beam leads to an overly stiff element. The net displacement will therefore 
be much less than that observed in the actual structure. Such behaviour is known as shear locking, ([2], [3], [5]). 
The shear locking phenomenon results when the stiffness of the structure is significantly over-predicted (i.e. 
displacement is under-predicted) due to the inconsistency of the assumed interpolation function.  

The proposed unified beam element accommodates the quadratic variation of the transverse shear strain. This 
paper proposes a new method for determining the critical buckling load of beams with inclusion of shear 
deformation.. 

2.0 Finite Element Formulation 

Consider a two-node, straight, prismatic beam element made of a homogenous linear elastic material with 
modulus of elasticity, E, moment of inertia, I, and cross-sectional area, A. (Fig. 1). 

 
Fig. 1 – Beam element 

2.1 Interpolation Functions 

In formulating the interpolation functions, the beam deflection w is divided into two components; that due to the 
flexure, wb, and that due to transverse shear, ws. The angle of rotation of the cross-section  is divided into its 

constitutive parts; the angle of cross-section rotation due to bending, b and the cross-section slope due to shear, 

s  (see Figure.2). 
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Fig. 2 – Kinematics of a beam undergoing both bending and shear rotations 

Using Hermite cubic polynomial to approximate the flexural deformation,  xwb , 
: [4, 6] 
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The coefficients 1a , 2a , 3a and 4a are determined from the boundary conditions of the beam element: 

 0xwb = 1bw = 1a  

 lxwb  = 2bw = 1a + 2a L + 3a 2L + 4a 3L  

)0( xb = 1b = 2a  

)( lxb  = 2b = 2a + La32 + 2
43 La  

Thus, the generalized nodal displacements for the Bernoulli beam are defined by bw  
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where { iu } denotes the column displacement vectors  T
bbbb ww 2211 ,,,   

and the ’s are given as 

 
              (4) 

Using a quadratic polynomial to approximate the shear deformation, )(xws : [7] 
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The coefficients 1b , 2b and 3b are determined from the boundary conditions: 

 0xws = 1sw = 11 b  

 lxws  = 2sw = 11 b + 2b L + 3b 2L  
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The generalized nodal displacements for the shear beam are defined as sw and s  

    i
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                                  (7) 

where iu denotes the column displacement vector  T
ssss ww 2211 ,,,   

and the ’s are given as 
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2.2 Bending-Shear Interaction Factor 

To ensure continuous interaction between the bending and shear components as a function and to avoid the use 
of partial derivatives, an expression for the total cross sectional rotation  is proposed as: [8] 

)()1()()( xxx sb                                                             (9) 

where )(x is the total cross-sectional rotation of the beam 

)(xb is the cross-sectional rotation of the Euler-Bernoulli beam 

)(xs is the cross-sectional rotation of the shear beam 

  is the bending-shear interaction factor  and is expressed as the ratio of bending strain energy to total strain 

energy of a simply-supported beam under load. 

That is: 
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where   = 
b

s

U

U
 

bU  = bending strain energy 

sU  = shear strain energy  

The integral expression for bending strain energy is given by the familiar expression: 
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where E is the elastic modulus of the beam material. 

I = moment of inertia of the beam section. 

Consider a simply supported beam with a point load P at midspan. 

 
Fig. 3- A simply supported beam under a point load P at the center 

The bending moment at a section, distance x from a support, is given by: 

2
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Since the maximum bending moment occurs at midspan (x=L/2),  
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Substituting for )(xM in Equation (11) and performing integration gives 


EI
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Ub 96

32

           (13) 

The shear force at any section, distance x from a support, is: 

2
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P
xQ            (14) 

The integral expressions for shear strain energy is given by the familiar expression 
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Substituting for )(xQ in Equation (15) gives the shear strain energy as: 
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where E= Young’s modulus 

G= shear modulus 

A= cross-sectional area 

k = shear coefficient depending on the shape of cross-section. 

Edem [8] proposed that the bending-shear interaction factor,  , be based on the value of   for midspan point 

load, i.e. Equation (17). 

3.0 Beam Element Stiffness Matrix 

The bending strain energy of the Euler-Bernoulli beam is given Equation (11): 
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where )(xM is the bending moment. 

But Curvature is x  = 
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where )(x is the slope. 

Using the expression for the total cross-sectional rotation (Equation 9), the total energy in the unified beam 
element under a distributed normal load q is expressed as:  
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From Equations (3) and (7): 
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iis uxx    for the shear beam            (21) 

From Castigliano’s first theorem, the stiffness coefficient Kij is given by 
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The assembled unified beam element stiffness matrix is K is
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4.0 Beam Element Stability Matrix 

The stability matrix is formulated using the kinetic energy principle. 

Consider a long compression member shown in Figure 4 

 
Fig. 4 – Beam under compression 

If an axial load P is applied and increased slowly, it will ultimately reach a value Pcr that will cause buckling of 
the beam or column. Pcr is called the critical buckling load of the beam or column. 

The total kinetic energy for the rotation of the cross-section due to bending is given by 
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Following the finite element method philosophy, the element displacement field is interpolated for flexure and 
shear rotation by shape functions, Equations (3) and (7): 
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The stability coefficient is given by 
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The assembled unified beam element stability matrix is 
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5.0 Governing Equilibrium Equations 

Consider an element of a beam-column in the deformed position with the forces acting as shown in Fig. 5: 

 
Fig. 4 – Axially-loaded propped cantilever beam 

Considering vertical equilibrium: 
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Equation (31) is the beam-column differential equation. 

The strain energy due to bending is: 
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where M is the bending moment. 
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The force P will move through a distance given by  

 









L

dx
dx

dw

0

2

2

1
 

Thus, the total potential energy is given by 
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For equilibrium, the total potential energy is minimum: 
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For stability analysis and determination of the magnitude of the static compressive axial load that will cause the 
beam to buckle, the lateral load q=0. 

Thus, the critical buckling load Pcr that satisfies Equation (33) is: 
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But from Equations (22) and (28): 
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Substituting into Equation (34) and taking u=w: 

  0 wKPK Gcr                                                                                                                                             (35)
 

where K = structure stiffness matrix given by Equation (21) 
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          GK = stability matrix given by Equation (26) 

           crP = critical buckling load 

            W = vector of structure nodal displacement 

Equation (35) is an eigenvalue problem which gives nontrivial solution when Pcr satisfies the equation: 

det 0)(  Gcr KPK
                     (36) 

The lowest positive eigenvalue of this equation is the magnitude of the buckling load and the corresponding 
eigenvector is the deformed shape of the buckled beam. 

Substituting for [K] and [KG] in Equation (36) gives: 
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6.0 Presentation And Discussion Of Results 

Consider the propped cantilever beam loaded axially with P as shown in Fig. 5: 

 
Fig. 5 – Axially-loaded propped cantilever beam 

A 2-element finite element idealization of the beam is shown in Fig. 6 

 
Fig. 6 – Finite element idealization of beam structure 

The nodal displacements are numbered as shown. 

The boundary conditions of the propped cantilever are  

WA = WB = θA = 0 

Expanding equation (37) for the two elements and implementing the boundary conditions (noting that L=l/2 for 
each element) leads to Equation (38): 
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where  = 
୔୐మ

୉୍
 

Solving Equation (38) gives: 

 ൌ 20.089 ൅ 14.7285 ൅ 2.1928 
ଶ 

Thus the critical buckling load is 

Pୡ୰ ൌ  
ଶ଴.଻଴଼ଽ ୉୍

୐మ
ቀ1 ൅ 0.7112  ൅  0.1059 

ଶ
 ቁ                                                                                          (39) 

Using the relationship given by Equation (17) for  : 

kAGL

EI
2

12


                     (40)

 

The following parameters are assumed for the beam section, [11]: 

(i) Shear correction factor, k=5/6 
(ii) Poisson’s ratio, v=0.25 
(iii) L/d=100 

G ൌ  
E

2ሺ1 ൅ vሻ
ൌ  

E

2ሺ1 ൅ 0.25ሻ
ൌ  

E

2.5
 

kAGL

EI
2

12
  

ൌ 
12E

Lଶ
ቆ
bdଷ

12
ቇ ൬

1

bd
൰ ൬
2.5

E
൰ ൬
6

5
൰ 

i.e.  ൌ 3ቀ
ୢ

୐
ቁ
ଶ
 

Substituting for   in Equation (39) and L/d=100, the critical buckling load of the beam is: 

Pୡ୰ ൌ  
ଶ଴.଻ଵଷଶ ୉୍

୐మ
                        (41) 

In general, the Euler critical buckling load for any support condition is given by: [9, 10] 

Pୡ୰ ൌ  
πଶ EI
ሺKLሻଶ

 

where K = effective length factor 

∴ K ൌ  ට
πమ୉୍

୐మ୔ౙ౨
           (42) 

Substituting Pୡ୰ ൌ  
ଶ଴.଻଴଼ଽ ୉୍

୐మ
൫1 ൅ 0.7112  ൯  as derived for the propped cantilever beam (neglecting higher 

degree of  ), then  

∴ K ൌ  ඨ
π2

20.7089(1 ൅ 0.7112  )
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i.e. K ൌ  
ଵ

ටଶ.ଵ଴ାଵ.ସଽ  

          (43) 

Similar finite element analysis using a 2-element mesh is performed for other support conditions of the beam 
and the results are presented in Table 1: 

Table 1 – Derived Formulae for the Critical Buckling Load and Effective Length of Beams 

Support Condition Critical Buckling Load, ܚ܋۾ 

( x  
۳۷

૛ۺ
 ) 

Effective Length Factor, K 

Pinned-Pinned 9.94൫1 ൅ 0.92 ൯ 1

ට1.01 ൅ 0.92  

 

Clamped-Free 2.47൫1 ൅ 2.52 ൯ 1

ට0.25 ൅ 0.63  

 

Clamped-Pinned 20.71൫1 ൅ 0.72 ൯ 1

ට2.10 ൅ 1.49  

 

Clamped-Clamped 40.004൫1 ൅ 0.37 ൯ 1

ට4.05 ൅ 1.49  

 

Legend:  

E = Modulus of elasticity (N/m2) 

L = Length of beam (m) 

 ൌ 3ሺd/Lሻଶ 

The effect of span-to-depth (l/d) ratio of beam on the critical buckling load for different support conditions is 
presented in Table 2. 

The parameters assumed for the beam section are, [11]: 

(i) Shear correction factor, k=5/6 
(ii) Poisson’s ratio, v=0.25 

Table 2 - Relationship Between Span/depth (L/d) Ratio and 






crE

cr
P

P

 

Ratio 

(L/d) Pinned-Pinned Clamped-Free Clamped-Pinned Clamped-Clamped 
100 1.01 1.00 1.00 1.01 

20 1.01 1.02 1.00 1.02 

10 1.03 1.08 1.02 1.02 

5 1.13 1.35 1.09 1.06 

4 1.21 1.60 1.14 1.08 

2 2.11 4.86 1.59 1.29 

1 10.39 40.07 4.11 2.14 

Legend:  

crP - critical buckling load of Unified beam 

crEP - critical buckling load of Timoshenko beam 

A comparison of solutions for the critical buckling load of beams for different support conditions using 
analytical, Timoshenko and Unified beam models is presented in Table 3. 

The following parameters are assumed for the beam section, [6]: 

(i) Shear correction factor, k=5/6 
(ii) Poisson’s ratio, v=1/3 
(iii) Modulus of elasticity, E=107 N/mm2 
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(iv) Length of beam =1.0 m 

The beam was discretised into five finite elements in each case. 

Table 3 – Comparison of Critical Buckling Load of Beams Using Different Models 

L/d Simply- Supported Ends Fixed Ends 
Analytical TBT UBE Analytical TBT UBE 

10 8013.80 8013.86 8014.97 29766 29877 29880 
100 8.223 8.231 8.224 32.864 32.999 33.666 
1000 0.0082 0.0082 0.0082 0.0329 0.0330 0.0338 

Legend: UBE – Unified Beam Element, TBT – Timoshenko Beam Element 

The results in Table 1 demonstrate the advantage of the shear locking-free unified beam elements. The results 
show that it requires just a 2-element mesh to produce excellent results, in contrast to the 16-element mesh used 
by Reddy [11] for the same problem. The unified beam element thus models shear deformation extremely 
closely, [12]. The results also show that the shear deformation parameter   influences the critical buckling 
load. As the beam changes from stocky to slender, the shear deformation parameter reduces from 1 to 0, and the 
critical buckling analysis reduces to classical solution. This is also applicable to the effective length factor. 

The results in Table 2 show that shear deformation contributes less than 5% to the critical buckling load for L/d 
ratio greater than 10. Also, the critical buckling load increases as the L/d ratio decreases 

The results in Table 3 demonstrate the accuracy of the unified beam element model for both deep and slender 
beams in comparison with the analytical and Timoshenko beam models. 

7.0 Conclusion 

In this paper, a unified beam element model of the Euler-Bernoulli and Timoshenko beam theories is developed. 
Bending stiffness and stability coefficients of the unified beam element are derived by employing a bending-
shear interaction factor. Explicit formulae for the critical buckling loads and effective lengths of Timoshenko 
beams based on the proposed unified element have been developed for different support conditions. 

The numerical examples presented demonstrate the validity and accuracy of the proposed unified beam element 
model in the evaluation of the critical buckling load of beams. The results suggest that for design purposes, 
shear deformation may be safely ignored for beam span-to-depth (l/d) ratio greater than 10, while for l/d ratio of 
5 and less, shear deformation effect is significant and should be accounted for. 
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