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Abstract—The preservation of food by dehydration is the oldest and most common method used by 
humans and the food processing industry. This research aimed to study the osmotic dehydration and hot-
air drying of “perolera” pineapple (Ananas comosus) in four sweetening agents. Osmotic solutions 
(sucrose, glucose, fructose and honey) and their mixtures at a ratio 50/50 (sucrose-fructose, honey-
glucose, fructose-glucose and sucrose-honey) in water at concentrations of 40 °Brix and 50 °Brix were 
used. A fruit/syrup ratio 1/5, without agitation was used. Water loss (WL) and weight loss (WR) and 
solids gain (SG) were studied after treatments with all the osmotic solutions.Glucose and honey caused 
the most significant WL and WR, being the most effective ones at both concentrations to dry.In the same 
way, the mixture glucose-fructose was the most effective for WL and WR. Results for SG were 
entirelydifferent.The optimum concentration was 50 °Brix.A product with 61.16 % humidity on a wet 
basis was obtained. After hot-air drying, a moisture content of 36.43% was achieved.  

Keyword - Kinetics, diffusivity, drying, reductor sugars, pineapple. 

I. INTRODUCTION 

Fruits and vegetables are highly perishable products. Commonly, up to 23% of the most perishable fruits and 
vegetables are lost due to physiological microbiological deterioration, water loss, mechanical damage during 
harvest, packaging, inadequate transportation or handling conditions. These losses are more than 40 % to 50 % 
in tropical and subtropical regions. In addition to microbiological alteration, physical-chemical changes during 
the processing and storage of fruits can cause deterioration in their quality, affecting colour, texture, taste, smell 
and nutritional value[1]. 

Currently, in the agro-industrial sector, many types of technological preservation processes are used and 
among the most widely used are dehydration processes, which prove to be an effective technique for achieving 
stable products with sensorial and nutritional characteristics, making it possible to obtain a product for 
consumption with a certain similarity to those that are in a fresh state and products that are minimally 
processed[2]–[5]. In the specific case of fruits, the most recommended preservation methods are osmotic 
dehydration (OD) and hot-air flow dehydration (HFD). The OD is widely used to partially remove water from 
plant tissues and obtain a significant increase in their shelf life by immersion in a hypertonic solution [6]. The 
kinetics of OD processes are generally evaluated in terms of water loss, weight loss and solids gain and depend 
mainly on the characteristics of the raw material and process conditions, such as composition and concentration 
of the osmotic solution, temperature, immersion time, agitation level, specific aspects of the food (size and 
shape) and the ratio food/solution [7], [8]. This research aimedto study the osmotic dehydration kinetics of 
perolera variety pineapple samples(Ananas comosus)in different sweetening agents and concentration to obtain 
better results in the process, as well as later apply hot-air drying in order to prolong its shelf life. 

II. MATERIAL AND METHODS 

A. Raw Material 

Perolera variety pineapple (A. comosus), sugar, glucose, fructose and commercial honeywere obtained from a 
local market in the city of Cartagena de Indias (Colombia). 

B. Osmotic dehydration and experimental design 

A completely randomised block experimental design was employed, resulting in four treatments. F1: sucrose, 
glucose, fructose and honey solutions at 40 °Brix each; F2: sucrose, glucose, fructose and honey solutions at 
50 °Brix each; F3: mixtures sucrose-fructose, honey-glucose, fructose-glucose and sucrose-honey solutions in a 
ratio of 50/50 and 40 °Brix each and F4:mixtures sucrose-fructose, honey-glucose, fructose-glucose and 
sucrose-honey solutions in a ratio of 50/50 and 40 °Brix each. 
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Fig. 13.Drying curves of samples after osmodehydrationby using sucrose at 40 °Brix ( ), glucose at 40 °Brix ( ), fructose at 
40 °Brix ( ), honey at 40 °Brix ( ), sucrose at 50 °Brix ( ), glucose at 50 °Brix ( ), fructose at 50 °Brix ( ) and 

honey at 50 °Brix ( ). 

 
Fig. 14.Drying curves of samples after osmodehydrationby using the mixtures sucrose-fructose at 40 °Brix ( ), honey-glucose at 

40 °Brix ( ), fructose-glucose at 40 °Brix ( ), sucrose-honey at 40 °Brix ( ), sucrose-fructose at 50 °Brix ( ), honey-
glucose at 50 °Brix ( ), fructose-glucose at 50 °Brix ( ), sucrose-honey at 50 °Brix ( ). 

In dehydration and hot-air drying processes, the mass decreases as the time of the process increases, but in the 
case of OD, this method undergoes the first stage of osmosis as previously indicated where solutes are 
exchanged between the solution and the food. It is precisely there when the fruit mass begins to experience a 
slight increase since the velocity of the solute's entrance during the first two hours is higher than that of the 
water outlet until the process is stabilised and dehydration begins[1].  

In the case of HFD as shown in Fig. 13 and 14, the mass always tends to decrease, experiencing most 
significant loss in the course of the process, so it is in this interval of time where drying has a higher incidence 
on the fruit, also coinciding with results obtained by Zapata and Castro [24] who argued that in this interval of 
time was where the most considerable loss of mass occurs in dehydrated fruit by this method. Afterwards, the 
fruit begins to experience a tendency to maintain its weight constant or practically unchanged. 

From Fig. 13 it can be seen that all the treatments were carried out until an optimal drying (almost 100%), but 
it was also observed that there were differences among them, specifically regarding drying time. For example, 
the osmotic treatment that reduced water loss in greater proportion was fructose at 40 °Brix, since it was the 
treatment that reached a maximum drying time after 2 h. This was mainly because fructose has a high osmosity 
index in relation to other compounds. This osmosity is greater for fructose since its molecular weight is lower 
and its ionising capacity is higher. Fig. 14 showed better results with the mixture glucose-fructose with a 
concentration reaching a constant massat 2.5 h. 
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E. Statistical analysis of osmotic solutions 

The ANOVA results showed that the type of osmotic solution, concentration and time, all with a p-value 
lower than 0.01 were highly significant for WR, WL and SGduring osmodehydration of pineapple (Table 1).For 
a better analysis of the process and experimental design, interactions were made between the factorstype of 
osmotic solution (A), concentration (B) and time (C), and it was observed that the AB, AC and BC interactions 
had a highly significant difference with p-values. This meant that WR, WL and SG during the process were 
influenced by the type of osmotic solution, concentration, time and its interactions. That is, the process 
wascontrolled by the kind of osmotic solution, concentration, time and its interactions. 

Table 1.Analysis of varianceof variables of the process 

Effect Weight loss Water loss Solid gain 

F-test p-value F-test p-value F-test p-value 

A: Osmotic 
solution 

15640.11 0.0000 834.53 0.0000 586.22 0.0000 

B: Concentration 1665.13 0.0000 364.91 0.0000 76.35 0.0000 
C: Time 39475.89 0.0000 8350.39 0.0000 1663.10 0.0000 
AB 102.88 0.0000 22.81 0.0000 5.00 0.0178 
AC 1113.98 0.0000 224.48 0.0000 42.81 0.0000 
BC 8.12 0.0021 7.63 0.0027 7.21 0.0034 

IV. CONCLUSIONS 

It could be concluded that the product obtained good results in the preservation through osmotic dehydration 
highlighting the solutions with glucose and honey and mixtures of glucose-fructose that caused more 
dehydration in the concentrations established. On the other hand, hot-air drying provided complete dehydration 
of the product, possibly allowing for a prolonged shelf life. Static analyses confirmed that there was a strong 
influence of the type of osmotic solution, operating time and concentration on weight loss, water loss, and solids 
gain. It is expected through this research to support the industrial sector, which embraces this technology as a 
means of production. 
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