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ABSTRACT- A graph G of order p and size q is called (a,d)-edge-antimagic total if there exists a one-to-one
and onto mapping f from V(G) U E(G)to{1,2,...,p + q} such that the edge weights w(xy) = f(x) +
f) + f(xy,xy € E(G) form an AP progression with first term "a’ and common difference ’d’. The
graph G is said to be Super (a,d)-edge-antimagic total labeling if the f(V(G)) = {1,2, ..., p}. In this paper
we obtain Super (a,d)-edge-antimagic properties of certain classes of graphs, including Fans graph, Single
fan graph, Half Kite graph and Ambrela graph.

Keyword — Vertex Labelingl Edge Labeling2 Edge-Antimagic3 Edge-Weight4. 2010 Mathematics Subject
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I. INTRODUCTION

All graphs in this paper are finite, undirected and without loops or multiple edges. For a graph G,V(G) and E(G)
denote the vertex set and the edge-set respectively. A (p,q) graph G is a graph such that |V(G)| = p and
|E(G)| = q. We refer the readers to [16] or [17] for all other terms and notation not provided in this paper.

A labeling of a graph G is any mapping that sends some set of graph elements to a set of non-negative integers.
If the domain is the vertex-set or edge-set, the labeling are called vertex labelings or edge labelings respectively.
Moreover if the domain is V(G) U E(G)then the labeling is called total labeling.

Let f be a vertex labeling of a graph G, we define the edge-weight of uv € E(G) to be w(uv) = f(u) + f(v).
If f is a total labeling then the edge-weight of uv is w(uv) = f(u) + f(uv) + f(v).

Let G be a (p,q) graph, a bijective function f:V(G)uU E(G)—{1,2,...,p + q} is called an (a,d)- edge antimagic
total labeling of G, if the set of all edge-weights : {w(uv): E(G)} ={a,a+d,...,a + (n — 1)d} where a >
Oandd >0 are two fixed integers called 1* term and common difference respectively of an Arithmetic
Progression (AP). In his Ph.D. thesis, Hegde called this labeling a strongly (a,d)-indexable labeling [1]. If such a
labeling exists, then G is said to be an (a,d)-edge antimagic total labeling. Moreover, f is a super (a,d)-edge-
antimagic total graph is a graph that admits a super (a,d)-edge antimagic total labeling. The (a,0)-edge-
antimagic total labelings are usually called edge-magic in the literature [2,3,6,7]. Definition of (a,d)-edge-
antimagic total labeling and super (a,d)-edge-antimagic total labeling where introduced by Simanjuntak et.al
[14]. These labelings are natural extensions of the notions of edge magic labeling studied by Kotzig and Rosa
[10]. Also see [3,9,13,15] and the concept of super edge-magic labeling defined by Enomoto et.al [11]. Mac
Dougall and Wallis [12].

Many other researchers obtained different forms of antimagic graphs. For example see Bodendiek et.al [2],
Harts field et.al [8], Baca et.al [3] established some relationships between (a,d)-edge-antimagic vertex labeling
and (a,d)-edge-antimagic total labeling. Also Bac” a et.al studied super (a,d) edge-antimagic total labelings of
mK,, [4] and super (a,d)-edge-antimagic properties of certain classes of graphs, including friendship graphs,
Wheels, fan, complete graphs and complete bipartite graphs [5].

In this paper we establish super (a,d)-edge-antimagic properties of certain classes of graphs, including Fans
graph, Single fan graph, Half Kite graph and Ambrela graph.
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I1. FAN GRAPHS

The Fans graph F,, is a set of n triangles having a common vertex as a centre ¢ and joined by a pendent edge cx
where x is pendent vertex. For the i™ triangle denote the other two vertices x; and y;

Theorem?2.1. Suppose that the Fans graph F,, (n > 1) is super (a,d)-edge-antimagic total then d < 3.

Proof . Suppose that F,;, n > 1 has a super (a,d) edge-antimagic total labeling

f:V(F,)—{12,..,5n+ 3}.

Thus W = {wuv):w(uv) = f(w) + f(v) + f(uv),uv € E(F,) ={a,a+d,...,a+3nd } is set of edge-
weights. One can easily see that the minimum possible edge-weight in super (a,d)-edge-antimagic total labeling
is at least 2n+6. On the other hand, the maximum edge weight is no more than 9n + 5

Thus, a+ 3nd <9n+5

In+5-a 7n-1
andd < —<
3n 3n

The following result is interesting because it Characterizes (a,1)-edge-antimagicness of Fans graphs.

<3

Lemma2.1. The Fans graph F,, has (a,1)-edge-antimagic vertex labeling for n=1,2,...,6,7.

Proof . First we verify that F,, has (a,1)-edge-antimagic vertex labeling for n=1,2,...,6,7.

Trivially F; has (a,1) edge antimagic vertex labeling f; with f; (¢) =1,f; (x;) = 2,

fii) =4, fx)=3or fi(c)=3,f(x)) =2, f(y1) =4 f(x)=1

In the case n=2, label f5(c) =3, fo(x1) =1, f2(y1) =3, foa(x2) =4, fo(y2) =6, f(x) = 2.

Ifn=3, then label f3(c) =35, f3(x1) =1, fas(y1) =4, f3(x2) =3, f3(y2) =7, fa(x3) =6, f3(y3) =8, f3 (x)=2
If n=4, then label fy(c) =7, fo(x1) =1, fa(y1) =6, fa(x2) =2, fu(y2) =4, fa(x3) =5, fa(y3) =9, fal(xs) =38,
faa) =10, fo (x)=3

If n=5, then the construct the vertex labeling f; in the following way:

f5(©)=9, fs(x1) =1, fs(y1) =8, fs(x2) =2, fs(¥2) =6, f5(x3) =3, f5(¥3) =4, fs(x4) =7,

fsa) =11, f5 (x5)= 10, f5 (y5)=12, fs(x) =5,

Forn=6, put fs(c) =11, fo(x1) =1, fe(¥1) =10, fo(x2) =2, fs(¥2) =7, fo(x3) =3, fe(¥3) =5, fe(xs) =4,
fe(Wa) =6, fo (x5)=9, fo (¥5)= 13, fo(xe) =12, fe(¥e) = 14.

Lastly for n=7, put f;(c) =13, fr(x1) =1, f7(y1) =10, f7(x2) =2, f7(¥2) =7, fr(x3) =3, f7(y3) =9, f7(x4) =
4, f:(0)=6, f; (xs) =5, fr 5)=38, f7(x6) =11, f7(¥e) =15, f(x7) =14, f7(y7) =16, f(x) = 12

It is a matter of routine checking to see that the vertex labeling f;, 1 < i <7 are (a,1)-edge antimagic.
Conversely suppose that there exists a one to one function f : V (F,) = {1, 2, ..., 2n + 2} with the set of edge-
weights of all edges in F,, is W (F,) = {a,a+1, .., a+3n}. Let f(c) =k, f(x)=1,1 <k <2n+
2and f(V(F,)) = S;US, U{k} U {[}where S; ={1,2,....k—2,k—1}and S,= {k+ 1, k+2,..2n,2n+
1} is a set consecutive integers.

Let W, = {w(cx;):1<i <ntu{w(cy):1<i <n}uU{x}

Wy={k+1,k+2,..2k—=22k—-12k+ 12k +2,..,k+2n+ 2x}

where as W, = {a,a +1,...,k — 1,k} and W3 = { 2k, 2k + 4, ...,a + 3n — 2} as the sets of edge weights where
W, and Wj; are obtained as sum of two distinct elements in S; — S; and S, — S; respectively. There exist an
pendent edge cx such that W(cx) =S; + S, ie ctx where S; €S; S, €S, Set S—{S;} contains >k —3 distinct
elements and % pairs of edge weight which implies k must be odd and | W, | = ?
The sum of the values in the set S — S; is equal to the sum of the edge weight in W,

Thus
k(12 -5, =822 4(E22) (22 1) where 1< 5, < k —1

2 4
3k 3k+8

or — =< a
4 4

The value of the ¢ is used (2n+1) times and the value of other vertices are used twice in the computation of the
edge-weights. The sum of all the vertex labels used to calculate the edge-weight of F, is equal to
230, fx) + 235 f) + @n+ D) + f(x) = 40’ +10n + 6 + 2nk — 2k — f(x)

The sum of the edge-weights in the set W is

IA

In?+5n+4

n=1W (ex) +Xiw (eyy) + i w (yy) +w (ex) = 3na +——;
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Thus the following equation holds

9n2+5n+4

250, f () +25s f 07 + @+ Dk — 2k — f(x) = 3na + 22
or 4nk-4-2x-n>+15n+8=6na
or 4nk-2k-2x- n*>+15n+8=6na.

Sincekisodd from3 <k < 2n+1, 3Tksa< 3k+8

and from last equation we get all possible integers of parameters n,k,a,x which are
(nk,ax)=(,1,3,3),(2,3,4,2),(3,5,5,2),(4,7,6,3),(5,9,7,5), (6, 11, 8, 8), (7, 13, 19, 12).
Theorem2.2. The fan graph F,has super (a,d) antimagic total labeling where d =0, 2 and n=1,2,...,7.
Proof . Label the vertices of F,,, n=(1,2,...,7) by the vertex labeling f;, 1 <i < 7. From the previous
lemma it follows that each labeling f;, 1 <i < 7.. successively suppose the value 1,2,...,2n+2
and the edge-weight of all the edges of F,, constitute an AP of common difference 1. If for each
F,,n={1,2, .., 7}, we make the edge labeling from the set {2n + 3, 2n + 4, ...5n + 3} then
resulting total labeling can be
(1) Super (a,0)-edge-antimagic with the common edge-weight a or
(2) Super (a,2)-edge-antimagic where edge-weights constitute an AP of common difference 2.

I11. SINGLE FAN

A Single fan F,;, n > 2 is a graph obtained by joining a vertex c to all the vertices of a path P,, and the vertex
x &P,. Thus F,, = (P, U{x}) + {c} where cx,,; is stand. F,, has nt2 vertices say ¢, x, x{, X2, -, Xp, Xn+1
and 2n edges say c¢x;,1 < i < n, and stand ¢x,,q and x;x;,;, where ISi < n—1

We obtain a least upper bound for super (a,d) edge antimagic total labeling of Single Fan.
Theorem3.1. If F, = (B, U {x,41}) + {c} is super (a,d)-edge-antimagic total labeling then d <3.
Proof.Let : f : V(F,) UE (F,) — {1,2, ..., 3n+ 2}, fis super (a,d)-edge-antimagic total
Labeling.

The set of edge weights W(F,,) = {w(uv) :uv €E(F,) } = {a,a + d,....a + 2n — 1)d}

The total edge weight of set is Yypeg(r,) Wwuv) = 2na + n(2n— Dd ... ... ... ..... (1)

The sum of all vertex labels and edge labels used to calculate the edge-weights is thus equal

to BEPf () + (n+ DF(@) + fOna) 2 {f Q) (6)} + Suwer(ry £ 0)
=3EELf () + (n = 2)f(¢) = 2f Cenyr) — {F Ce) + f ()} + Zuverr) f (uv)
=3{1+2+-+M+2)}+m—2)f (c) = 2f(xpy1) — fx1) - fx) + {n+3,....3n + 2}

_ {11n?+25n+18}+2(n-2)f(0)~4f (xn+1) =2 (x1) =2 (x5)

Y )

From (1) and (2) we have the following equation

2 - - - -
{11n?+25n+18)}+2(n 2)f(;) 4 Cong )27 C)27Cn) _ 5 4 op(2n — 1)d

d= 11n%+425n+18+2(n—2)f (€)—4f (Xn4+1)—2f (x1)=2f (xn)—4na
- 2n(2n—1)

The minimum possible edge-weight is a = 1 + 2 +n + 3. The label of centre is f(c) < n+ 2, f(xp41) =
land f(x;) + f(x,) = 3

n?+n
2n(2n-1)
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IV. HALF KITE

The half kite graph is a set of n triangles and 2n tails (pendent edges) having a common centre vertex ’c’. For it
triangle, pendent edges are denoted by x; and y; denote the other two vertices see fig 1.

6

{21

11

=t

12

n

€y 3

4

n=3, Fig. 2
n=2, Fig. 1
Theorem 4.1. Every half kite graph K,,, n > 1 has super (a,1)-edge-antimagic total labeling.
Proof . Now define the vertex labeling: V (K, )= {1, 2, ...,, 4n + 1} and the edge labeling
E(K,) = {4n +2, ..., 5n} in the following way
f)=2n+1
f(x)=i 1<i<2n
f)=4n+2-i, 1<i<2n
i+1
6n+3— 5 if iisodd;

f (cx;) = i

8n+3—§, if iiseven
i+1

4n+1+T, if iisodd;

f(ey) = ;
6n+2+§, if iiseven

_(8n+2+], ifi1<i<n-1

f(xiyi)_{ 5n + 2, ifi =n

Now we study the super (a,1)-edge-antimagic total labeling of half kite K, set of n triangles having common
centre vertex with nT_l tails (pendent edges) at centre vertex c, let x; denote the pendent vertices and y; and z;
denote the other two vertices (see fig 2.)

Theorem 4.2. Every half kite K, n = 1 with nT_l pendent edges when n is odd has super (a,1)-edge-antimagic
total labeling.

Proof. Let f : V(K,) = {1,2, ...,

5n+1
2

5n+1
2

} be the vertex labeling

and f: E(K,) - {
flo=1

+ 1...+ 6n} We define f as follows:

. oo n—1
fxi=i+1, 1<i< >
n+1 | )
f(yl-)=T+L, 1<i<n
3n+1
f(zl-)=¥+i, 1<i<n
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n—1
flex) = 2+, 1<i<

n+1
fley) =——+1+1, 1<i<n

2
n+1 ]
Cz;) = L, n <i<2n
f(cz) > +1<i<?2
n+1
f(ViZnagn) =3n+3—1i, 1<i< >
. n+3
f(YiZZn—2(1—i)):4n+3—l, TSLSTL
V. AMBRELA

A wheel W,,,n = 3 is a graph obtained by joining all vertices of a cycle C,, to a another vertex ¢ called the
centre. An Ambrela 4, n = 3 is a graph obtained by joining c to y, of a path P,. 4, contains 2n+1 vertices say
X1, X2 wene ene X, €, V1, Vo, sV and 3nedges say cx;, 1 < i <n,x;X;41, 1 SiS<n—1, xpxq, YiVisr, 150
n—1and cy;.

Theorem 5.1. If Ambrela A,,n > 3 is super (a,d)-edge-antimagic total labeling then d < 3.

Proof . Suppose that there exist a bijection f: V (4,) UE(4,) -» {1,2,..,n+1,n+ 2,..5n+ 1}
Which is a super (a,d)-edge-antimagic total

And W= {wuv):w(uv) = f(w)+g W) + gluv),uv € E(4,)}={a,a+d,..,a+ (3n—1)d}
is the set of all edge weights. The maximum edge weight is no more than 2n + (2n+ 1) + (5n+ 1)
Thus

a+(e—1Dd=a+@Bn—1Dd<IM+2 i vr v ve e (3)
on the other hand, the maximum possible edge weight is at least
T4+2+@2n+2) 06 @ 2N+ 5 it s o et et e v e e e e e e e e e e eeen(B)

From (3) and (4) for ambrela A,, we have

a+(Bn—-1)d<9n+2
d< In+2-a < 7n+3 <3
3n-1 3n-1
Theorem 5.2. The Ambrela 4,, An has super (a,d)-edge-antimagic total labeling with f (x;) =1,

Iig<n f()=n+1 f(y)=n+1+i 1<i<n, ifandonlyifd = 1on+?

Proof . Assume that a one-one and onto function f:V (4,) UE (4,) — {1,2,...,5n + 1} is a super (a,1)-edge-
antimagic total labeling. In the computation of the edge weight of A,, under the one-one and onto function f the
label of the centre is used n+1 times, the label of each vertex x;, 1 < i <n is used 3 times, label of each vertex
¥i;1<i<n -1isused?2 times and y,, once.

Thus
3N f () + (m+Df(e) + 255 f () + f ) + Beera, f(©)
=31+2+-2n+1D)+m—-2)f(e)—-XfF () —2f(v) + [2n+2...5n + 1]

33n2+27n+6

= — —+ M=2)f(e) =X fS ) = F ) e, (5)
The sum of the edge weights under the one-one and onto mapping f is

Y cerapywie) = 37“{2a NG ) ORI ()
From (5) and (6)

2
33n“+27n+6 n

Z{2a+@Bn-1} =TT 4 (m-2)f(0) — X f 0 — fOn)
By putting f(c) = n+1

2
ma+2@Bn—1) =2 -2+ 1) — [+ 2) + -+ @+ D] - 2n+ 1)
2
Ina = 33n“+18n _3?11 (371 _ 1) + (TL _ 2)(11 + 1) _ (2n+1)n(2n+2) _ (n+1)2(n+2) _ (211 + 1)
a=22% yhere n= 3,9,1521.....
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The following figures (3),(4),(5) and (6) are drawn for n=3,9,15,21. The general representation is left to the

reader.
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