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Abstract — The paper deals with an oscillation based built-in self-test (OBIST) technique to test faults in 
complex CMOS digital circuits (CCDCs). It focuses on stuck-at-faults, open or short faults, parametric 
gate delay faults. The method converts complex CMOS digital circuit under test (CCDCUT) to an 
oscillator and the output pulses are measured for fix time duration. Discrepancy in the number of pulses 
is used to judge circuits with catastrophic faults as well as parametric gate delays beyond the threshold 
limit which is set by designer. The advantage of this method is it does not need external test vector input 
or complex response analyzer. Universal gates and CCDCs are used to assess and substantiate the 
usefulness of proposed method. The simulation results show that the proposed method is quite proficient 
to improve diagnostic accuracy. Fault coverage for catastrophic faults is almost 100%. For ±10% 
deviation in parameters outside tolerance range limit 100% fault coverage is obtained. The yield loss is 
around 5% in the tolerance range limit. 

Keywords - Built-in self-test, catastrophic faults, complex CMOS digital circuit, complex CMOS digital circuit 
under test, fault-free complex CMOS digital circuit, oscillation based built-in self-test. 

I. INTRODUCTION 

 Manufacturing very high speed CCDCs is the aftereffect of incessant advancement in semiconductor 
technology. The advantages of CCDCs are they need fewer MOSFETs and are fast due to single level circuits. 
The main desideratum of the manufacturer is to provide fault-free high performance circuits at low price. Fault-
free chips are needed to reduce the IC cost which is essential to increase the product yield. In mixed signal ICs 
majority of circuits are digital and testing them is vital to improve yield. To ensure fault-free integrated circuits, 
a prototype is developed and tested vigorously before high-volume production [1]. In chips with high density of 
complex circuits, many internal sub-circuits are not accessible through the external input-output pins of IC. Such 
circuits can be tested by built-in self-test (BIST) which is fast and does not need advanced expensive automatic 
test equipments. 

 OBIST method for analog circuits is discussed in [1]-[13]. Conversion of CMOS inverter into oscillator is 
discussed in [1]. In this paper it is used for testing CMOS complex digital VLSI circuits. The method proposes 
change in oscillation frequency to detect catastrophic as well as parametric faults present in the circuit. Analog 
as well as digital circuits are manufactured on the same wafer in case of mixed signal IC. To test mixed signal 
circuits is a costly and challenging process [1]. The method reduces area overhead and cost if it is used to test 
both analog as well as digital parts in a mixed signal chip. 

Quiescent current ( IDDQ ) testing approach  and traditional approach of applying different input test vectors 
are used for testing digital circuits. These methods are used for easily detecting faults in simple digital circuits. 
These faults include, the catastrophic faults like stuck-at-faults due to short circuit of input or output pin to VDD 

or ground and open or short faults. However, for complex circuits containing more number of MOSFETs the 
IDDQ method cannot give satisfactory results and the traditional approach is a tedious and delayed process due to 
increased test vector length. 

In some cases, integral current sensor for ∆IDDQ testing was used. The quiescent current was figured out by 
measuring number of clock pulses till the voltage at the disconnected node drops below reference value.  Hence, 
the accuracy is enhanced by adjusting reference number and clock signal frequency [12]. In some instances, per 
chip current-threshold have been adaptively determined for IDDQ testing to enhance test accuracy. Primarily the 
process condition of chip and sensitization vectors have been estimated based on Bayesian inference which 
successfully detected a very small leakage fault down to 16% of nominal IDDQ current with the test escape ratio 
of 3.1% [13] [14]. In [15] OBIST method was used to detect faults in operational amplifier of  R-2R ladder D/A 
converter and IDDQ method for testing of R-2R resistor network. A fault coverage of 100% and 96% respectively 
for 10% and 5% deviation in resistors value from its ±20% tolerance range was obtained. The IDDQ testing 
method used required 8 test vectors for R-2R resistor network. 
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OBIST technique to test faults in CCDCs is presented in this paper. Discrepancy in the number of pulses is 
used to find circuits with catastrophic faults as well as parametric gate delays beyond the threshold limit set by 
designer. Imperfection in length of channel (L), width (W), threshold voltage (VT) and transconductance (µ) of 
MOSFETs are responsible for gate delays. The advantage of this method is it does not need external test vector 
input or complex response analyzer. Universal gates and CCDCs simulated using 50nm technology are used to 
assess and substantiate the usefulness of proposed method  

The layout of the paper can be given as: The conversion of digital circuit to an oscillator is described in 
section 2. Section 3 explains the procedure for testing. Simulation results are discussed in section 4. Section 5 
contains comments on the results obtained. Section 6 concludes the paper. 

II. BASIC PRINCIPLE OF OBIST FOR CCDC 

The OBIST methodology for CMOS circuits is illustrated by considering an example of basic gate inverter. 
The channel mobility of electrons is approximately twice that of the holes. Due to this, the conductivity of 
NMOS devices is doubled and it is twofold faster than that of identical PMOS device. To compensate for the 
lower mobility of holes and balance the switching speed, the width of PMOS device is doubled. This gives both 
propagation delay times identical. The oscillator action is obtained by connecting resistor R, capacitor C and 
inverter INV2 as shown in Fig. 1. The channel width of INV2 MOSFETs is taken large to make its propagation 
delay negligible as compared to that of inverter INV1 under test. Due to this the number of pulses provided by 
oscillator circuit will not get affected by minor parasitic variations in INV2. The INV1 input signal, its output 
signal and INV2 output signals are shown in Fig. 2. 

When input of INV1 is low, its output is high and final output of INV2 is low. The voltage across capacitor C 
is zero and it charges towards VDD by the current flowing through the ON P channel MOSFET. As soon as input 
voltage becomes half of VDD the inverter INV1 output changes to low level, the output of INV2 becomes high 
and the capacitor voltage jumps to [(VDD/2) + VDD]. As output of INV1 is low the capacitor discharges  to 
ground level voltage through resistor R and N channel MOSFET. When input voltage drops below VDD/2, the 
INV1 changes state from ON to OFF. The output of INV2 changes state to low level, the capacitor voltage 
becomes –(VDD/2) and it charges through R and pull up device to VDD/2, the INV1 turns ON. If channel ON 
resistance of pull up and pull down devices is same then T1 = T2 and period T is (T1+T2).  

 
Fig. 1. CMOS inverter converted to an oscillator. 

 

Fig. 2. Waveforms showing inverter 1 input, output signals and inverter 2 output pulses 
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T = T1 + T2  = 2.2 RT CT 

The frequency of oscillator fOSC is given by following equation; 

fOSC = [ 1 / (2.2 RT CT ) ]          (1) 
Minimum geometry MOSFETs are used for experimental work. Aspect ratio W/L of N channel MOSFET is 

adjusted to 1 and as mobility of holes is half as that of electrons, the P channel device with aspect ratio 2 is 
considered to have identical rise and fall times. Hence, the inverter 1 has an aspect ratio of 2. When output of 
INV1 is low, the N channel MOSFET operates in linear region. The selection of proper value of resistor R is 
important to have oscillatory output. The value of R is taken as 50 times of the ON resistance of N MOSFET to 
have strong low level output of INV1. Table I shows dependence of low level output and fOSC on R and for aspect 
ratio of N channel MOSFETs 1 and 10. It observed that when R value is equal to channel resistance of N type 
MOSFET when it just enters into saturation mode, the INV1 goes to metastable state and circuit ceases to 
oscillate.  

The oscillation frequency of simulated circuit when R = 400 kΩ is 750 Hz which matches with theoretical 
value of 757 Hz when channel resistance and parasitic capacitance are also taken into consideration.  In equation 
1, RT is R plus equivalent ON resistance of selected MOSFET and CT is C plus parasitic capacitance of devices 
in the circuit. The small variation in theoretical and practical frequency is result of added negligible propagation 
delay of INV2. The results are verified for circuits having different aspect ratios of MOSFETs, and it is observed 
that the fOSC is directly proportional to aspect ratio. For increase in aspect ratio by 10 times, required R is 40kΩ 
and the fOSC becomes 7423 Hz. When this circuit is simulated for 10 ms, 74 pulses are produced. 

TABLE I.  Effect of R on low level output and number of pulses of inverter 1 

Sr. 
No. 

Inverter 1 with aspect ratio of N channel 
MOSFET 1 

Inverter 1 with aspect ratio of N channel 
MOSFET 10 

R in 
kΩ 

Frequency 
in Hz 

O/P low level of 
INV1 in mV 

R in 
kΩ 

Frequency 
in Hz 

O/P low level of 
INV1 in mV 

1 100  2115 375 10 20882 382 

2 200  1290 180 20  12774 184 

3 300  946 117 30  9324 120 

4 400  750 87 40  7423 87 

5 500  634 71 50  6265 71 

III. STRATEGY FOR CHECKING CMOS CIRCUITS 

A. Testing Procedure 

The block diagram of testing procedure using OBIST is shown in Fig. 3. The CCDCUT and FCCDC are 
converted to oscillators and the output pulses of both are measured using digital counters. The counter outputs 
are compared by comparator circuit. Identical circuits have equal number of pulses and test outcome is Pass. In 
case of any fault in the CCDCUT, the number of pulses differs and test outcome is Fail which rejects the chip. 
Fig. 4 shows the schematic diagrams for two CCDCs. Usefulness of proposed method is studied for these 
circuits. 
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Fig. 3. Strategy for comparing number of pulses provided by complex CMOS digital circuit under test (CCDCUT) and Fault-free complex 

CMOS digital circuit (FCCDC) using OBIST method 

Fig. 4. Two CMOS complex digital circuits 

B. Fault Models of MOSFETs 

The fault models of N, P channel MOSFETs are shown in Fig. 5. Stuck-open fault for open Source or 
drain terminal of MOSFET is emulated by connecting high value resistor of 10 to 100MΩ in series with it. The 
short circuit between source, drain is emulated by small value resistor of 5 to 10Ω parallel to it. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Fault models for MOSFETs (a) N Channel source or drain open (b) P Channel source or drain 
open (c) N Channel source, drain short (d) P Channel source, drain short 
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C.  Flow chart representation to detect faults in CCDC using OBIST method 

The testing procedure mainly consists of converting CCDCUT and FCCDC into an oscillator. Range of 
faults are injected in the CCDCUT which is followed by verification of faults in it by comparing pulses 
generated by both circuits in a fix time slot. Fig. 6 shows a flow chart representation to detect faults in CCDC 
using OBIST method. Following list gives different steps for checking CCDC: 

(i) The FCCDC is transformed to an oscillator and the number of pulses provided in fix time interval 
are counted. 

(ii) Fault is introduced in the CCDCUT and simulation is done. 
(iii) Count number of pulses provided by CCDCUT in the fix time. 
(iv) Compare number of pulses provided by CCDCUT and FCCDC in the fix time interval. 
(v) The procedure is repeated until all faults are injected in CCDCUT. 
(vi) Nonappearance of fault in the chip will send it for further processing. For presence of fault it is 

rejected. 

 
Fig. 6. Flow chart representation to detect faults in CCDC using OBIST method 

 

IV. SIMULATION RESULTS AND ANALYSIS 

OBIST methodology is used to detect stuck-at, open or short, gate delay faults in universal CMOS gates and 
CCDCs. The circuit is converted to an inverter by connecting all its inputs together. External resistor, capacitor 
and one extra inverter are used to have oscillatory behavior. To quantify the fault coverage, the circuit is 
induced with various faults and pulses provided in the fix time duration are measured.  

A. Stuck at faults 

Stuck at one fault is created at input or output if the corresponding pin is shorted with VDD where as stuck at 
zero fault is created if the pin is shorted to ground. When stuck at fault is present, the circuit does not provide 
oscillations, number of pulses are zero, and this fault is very easily detected using proposed method. 
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B. Open and short faults 

For open or short fault, all the outputs are not according to the truth-table of the circuit. In complex circuit 1, 
when source, drain of P channel MOSFET with input A is open, out of 32 input possibilities, for 9 possibilities 
the circuit provides false output. For short circuit between source and drain also for 9 possibilities this circuit 
could not give correct output. When the proposed OBIST method is used the fault-free complex circuit no1 
provide 72 pulses in 100ms where as for open source or drain it provided 69 pulses and for shorted source and 
drain it provided 75 pulses. The number of pulses for fault-free and faulty circuit is different. Thus by counting 
pulses for fix time interval, whether the circuit has fault or not can be checked and there is no need to apply any 
test vector.  

C. Simulation results of complex circuits 

Universality for proposed method is shown by considering two complex digital circuits. Sixty six 
catastrophic faults and one hundred ninety two parametric faults are considered to check authenticity of 
proposed method. For presence of catastrophic fault, the circuit must be rejected. The number of pulses in 100 
ms for different catastrophic faults are 69 or less and 75 or more. Hence, if pulse count is outside the range < 70-
74 >, the chip is rejected 

D. Gate delay faults 

Due to process variation the threshold voltage, transconductance, channel length and width of P, N channel 
MOSFET, change; which manifests into change of propagation delay of circuits. The variation in propagation 
delay gives gate delay faults.  

 In integrated circuits, the worst case variation in these parameters is ±20%. The channel resistance of 
MOSFETs is in direct proportion to L, VT and is in inverse proportion to W, μ. The parameter variation which 
results in number of pulses outside 70 to 74 range will be rejected. For VT the variation in number of pulses is 
more as the inverter threshold voltage of equivalent inverter changes which affects the charging-discharging 
voltage level. Hence when VT is 15 to 20% even though the gate delay is within limit the chip gets rejected and 
there is yield loss. Table II shows number of pulses for variation of different parameters while yield loss for the 
circuits is tabulated in Table III. Monte Carlo analysis on each circuit is carried out for 50 runs to authenticate 
the results.  

All catastrophic faults are detected by this method. The average yield loss of 12.5% is observed when 
change in threshold voltage of MOSFETs is 20%. There is no yield loss up to 10% tolerance band of gate delay 
faults. To reject circuits outside 10% tolerance band the number of pulses should be outside < 71 – 73 > range.  

In integrated circuits the maximum tolerance range of parameters is ±20%. Possible parametric faults were 
simulated with varying L, W, μ, VT values by ±5% and ±10% deviation from its maximum tolerance range. The 
simulation results in Table IV and V show that for ±10% deviation in parameters, 100% fault coverage with test 
escape 0% is obtained. For ±5% deviation the average fault coverage is 95.3% with test escape of 4.7%. The 
variation of different parameters and their effect on number of pulses for all these circuits is shown in Fig. 7.  

TABLE II.  No. of pulses in 100 ms simulation time for ±5%, ±10%, ±15%, ±20% variation of different parameters 

Variation in 
parameters 

Complex circuit 1 Complex circuit 2 

-20 -15 -10 -5 +5 +10 +15 +20 -20 -15 -10 -5 +5 +10 +15 +20 

Fault  free 
normal 
circuit 

72 
72 

∆LP 74 73 73 72 72 71 71 70 74 73 72 72 71 70 70 70 

∆Ln 74 73 73 72 72 71 71 70 73 72 72 72 72 71 71 71 

∆WP 70 70 71 72 72 73 73 74 70 70 70 71 72 72 73 73 

∆Wn 70 70 71 72 72 73 73 74 71 71 71 72 72 72 72 73 

∆μp 70 71 72 72 72 72 73 73 70 70 70 71 72 72 73 73 

∆μn 70 71 72 72 72 72 73 74 70 70 71 71 72 73 73 74 

∆VTP 76* 75* 74 73 71 70 69* 68* 76* 75* 74 73 71 70 68* 67* 

∆VTn 76* 75* 74 73 71 70 69* 68* 76* 75* 74 73 71 70 69* 68* 

* Chip rejected (Yield loss) 

TABLE III.  Yield loss in percentage for four circuits at ±15%, ±20% tolerance 

Complex circuit 1 Complex circuit 2 

±15 ±20 ±15 ±20 

8.3 12.5 8.3 12.5 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 R. H. Khade et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i4/170904402 Vol 9 No 4 Aug-Sep 2017 2709



TABLE IV.  No. of pulses in 100 ms simulation time considering parameter variation of ±5%, ±10% outside ±20% tolerance range 

Variation in 
parameters 

Complex circuit 1 Complex circuit 2 

-10 -5 +5 +10 -10 -5 +5 +10 

∆LP 76 75 69 68 76 75 69 69 

∆Ln 76 75 69 68 76 75 69 69 

∆WP 68 69 75 76 69 69 75 76 

∆Wn 68 69 75 76 69 69 75 76 

∆μp 68 69 74* 75 68 69 74* 75 

∆μn 68 69 75 76 68 69 75 76 

∆VTP 78 77 64 58 78 77 62 58 

∆VTn 77 76 65 63 77 76 64 63 

* Fault not detected (Test escape) 

TABLE V.  Fault coverage and test escape for ±5%, ±10% parameter variation outside ±20% tolerance range 

% variation → Complex circuit 1 Complex circuit 2 

±5 ±10 ±5 ±10 

Fault coverage 93.75 100 93.75 100 

Test escape 6.25 00 6.25 00 

 
Fig. 7. Effect of parameter variation on number of pulses (a) Complex Circuit 1 (b) Complex Circuit 2 
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V. DISCUSSION 

OBIST technique for finding faults in analog circuits is used in [1]-[13], but in this paper it is used for 
complex CMOS digital circuits. In integrated circuits the worst case process parameter variation for passive 
components is 20%. As the testing circuit for CCDCUT and FCCUT is built on same chip, the process 
parameter variation is identical for both. Due to this, change in number of pulses for both circuits will be 
identical. This effect is checked by changing R, C by ±20% in same direction as well as in opposite one. Even if 
component values of tester changes, the circuit provides authentic results. The N channel MOSFETs in inverter1 
with aspect ratio 1 have ON resistance of 8 kΩ in linear mode. With change in technology the ON resistance of 
MOSFETs changes but external resistor R should be approximately 50 times ON resistance of MOSFET in 
linear mode. In experimental work for R = 400 kΩ and 500 kΩ the results are good. Hence 400 kΩ resistor is 
used to reduce area. The ratio W/L of pull up to pull down of equivalent inverter for all four circuits is adjusted 2 
to have equal propagation delay time. Due to this all four normal circuits have provided 72 pulses in 100ms.  

For higher W the equivalent ON resistance of MOSFETs reduces, the required R is less and more pulses are 
generated in stipulated time. This is verified for all four circuits. The used N channel MOSFETs in inverter1 
with aspect ratio 10 have ON resistance of 800 Ω in linear mode and for R = 40 kΩ all normal circuits provided 
72 pulses in 10ms. 

The channel resistance is directly proportional to value of L, VT and inversely proportional to value of W, μ. 
If all four parameters increase or decrease, the effect will counterbalance and variation in channel resistance is 
less. For 20% variation, the circuits will have gate delay within the threshold limit and the number of pulses are 
observed to be within the range of < 70-74 >. Hence, these circuits are not rejected; but if, there is a variation in 
L, VT in one direction and W, μ in opposite direction it rejects even for 5% variation.  This is because, the effect 
on channel resistance is maximum and the variation in gate delay is more, due to which the change in number of 
pulses is higher. All these effects are observed in the various circuits simulated in this work. 

The designer has to adjust simulation time and evaluate the range of pulses so that all chips containing 
catastrophic faults are rejected. While doing experimental work, simulation time of 100 ms and number of 
pulses outside < 70-74 > range are used to reject the circuits. This range depends on simulation time and the 
tolerance band required. Increase in simulation time provides better results.  

VI. CONCLUSION 

Detail analysis of OBIST method for CCDCs is presented in this paper. The obtained results clearly indicate 
that it has capability of testing faults in CCDCs. The merit of this method is that it can be used without an 
external vector or a complex response analyzer for detection of faults. A fault coverage of almost 100% is 
achieved for stuck-at faults, open or short faults. Time delay faults due to process variation are also detected. 
For 15% and more deviation in threshold voltage, the variation in number of pulses is higher which rejects even 
good chips, this gives yield loss of around 12.5%. For ±10% deviation in parameters outside tolerance range 
limit, 100% fault coverage is obtained with zero percent test escape. The simulation study demonstrates how the 
channel length, width of P channel N channel device can be adjusted to have circuits with equal propagation 
delays. Usage of an OBIST method to test both analog and digital parts in mixed signal IC, will eventually 
mitigate the area overhead and minimize the costs. This study further inspires in detail analysis for faults in 
different CMOS digital circuits.  
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