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Abstract—Indonesian energy production is dominated by non-renewable sources. To promote 
exploration of more sustainable energy sources, the current study focuses on determination of energy 
from tidal-current-induced power. The study includes field measurement, numerical modeling using 
MIKE3 (personal license), tidal model analysis, and power calculation. The field measurements include 
bathymetric, tidal, and current velocity surveys using an Argonaut-XR type Acoustic Current Doppler 
Profiler. The narrowest part of the bay is selected as the area of interest. Validation of the water elevation 
and current numerical model results with field measurements shows good agreement, with average errors 
of 5.34% for water elevation validation and 8.8% for tidal current validation. The model shows that the 
eastern part of the area of interest has the highest tidal-current velocity magnitude. The average and 
peak velocity magnitudes are 0.373 and 1.24 m/s, respectively. A Gorlov helical turbine is selected as the 
turbine for energy harvesting, because it has suitable height and cut-in-speed characteristics. Although 
the calculated generated power can only supply half of the average Indonesian consumption per capita, it 
is hoped that this study will provide an initial step toward sustainable power harvesting in Indonesia. 
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I. INTRODUCTION 

Global climate changes have been seen worldwide lately, mainly caused by mass production of non-
sustainable energy in most nations including Indonesia. During 2014, the share of non-renewable energy 
production in Indonesia was six times higher [1] than the share of renewable production. To overcome the 
negative effects of climate change, the development of infrastructure for harvesting renewable energy is deemed 
important. The issue is how to harvest the energy as efficiently as possible. Ocean-based renewable energy 
should receive the foremost attention since it has abundant potential.  

Previous studies show that tidal current is one of the most reliable forms of potential ocean-based energy 
sources among ocean thermal and wave energy sources. The technology is more accessible and well-established. 
Studies of tidal current power extraction have been well-developed in the past few years across the globe, for 
example in Scotland [2], India [3], Japan [4], Canada [5], and several others [6].  

The potency of tidal current in Kelabat Bay (Province of Kepulauan Bangka Belitung of Indonesia) will be 
assessed. The scope of this study covers several areas such as field measurement, numerical modeling, tidal 
model analysis, turbine selection, and power calculation. 

II. STUDY LOCATION 

Kelabat Bay is located at the northern part of Bangka Island, as shown in Fig. 1. Kelabat Bay is located in the 
range of 565,000–591,000 mE and 9,799,000–9,832,000 mS at region 48 south of UTM coordinate. Kelabat 
Bay links the districts of Jebus and Kelapa of West Bangka Regency and the districts of Belinyu and Riau Silip 
of Bangka Regency. Therefore, local small ship navigation is rather dense. Fishing boats, passenger ships, and 
tin dredger vessels pass through the bay frequently.  

The tidal characteristic in Kelabat Bay is found to be of diurnal type with a tidal range of 1.7 m, while the 
maximum current velocity in Kelabat Bay is expected to be around 1.5 knots [8]. 

Kelabat Bay is divided into three regions: the inner, narrowest, and outer regions (see Fig. 1b.) The average 
depths in the outer and inner regions are 8 and 5 m, respectively [8]. Meanwhile the narrowest area is deeper, 
with an average depth of over 10 m. The bay is approximately 13, 1.7, and 10.7 km wide in the outer, narrowest, 
and inner regions, respectively. It is expected that the combination of tidal propagation and the geometrical 
shape of the bay will cause high current velocity, especially in the narrowest part. The planned location for 
power harvesting is the narrowest part, as demarcated in Fig. 1b by a red box. 
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Fig. 1.  Locations of (a) Bangka Island and (b) Kelabat Bay 

III. FIELD MEASUREMENT 

Three types of field measurements were carried out, namely bathymetric, tidal, and current velocity surveys. 
The locations of the tidal and current velocity surveys were in the narrowest part of the bay, namely at points S1 
and S2, respectively. They can be seen in Fig. 2.  

 
Fig. 2.  (a) Location and (b–e) documentation of field measurement activities 

A. Bathymetry 

A bathymetric chart is needed as the base map for modeling. The equipment used was a GPS Single Beam 
Echosounder. The area covered by the bathymetric survey can be seen in Fig. 2a. The water depth in the middle 
of the narrowest part is around 20 m. Meanwhile the depth of the inlet to the bay from the South China Sea is 
around 20 m as well. 

B. Surface Elevation 

Tidal elevation is observed hourly on the peilschaal installed in a nearby local jetty (see Fig. 2c). The location 
is shown in Fig. 2a as point S1. The location of S1 is a calm area. The surface elevation is recorded hourly for 
15 days (half-moon cycle) from December 21, 2013 to January 4, 2014. The survey shows that the tidal range is 
2.1 m and the tidal characteristic in Kelabat Bay is the diurnal type.  

C. Tidal Current 

The location of the tidal current velocity measurement is denoted by point S2 (see Fig. 2a). The current 
velocity is measured using an Acoustic Current Doppler Profiler (ADCP), Argonaut-XR with a 0.75-Mhz 
autonomous multi-cell system specification. Figs. 2d and 2c show the activity of the ADCP arrangement and 
deployment. The location of the tidal current velocity survey is denoted by point S2, as seen in Fig. 2a. The 
ADCP is positioned at a height of 0.8 m above the seabed and consists of 10 layers of current measurement in 
all directions. Layer 1 is above the ADCP and the blank area (the blank area is about 70 cm in height), and layer 
10 is located at the top underneath the surface of the water. Fig. 3 illustrates the ADCP and its layers of 
measurement. 
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The measured tidal current velocity at S2 varies in all cells, with the average velocity ranging from 23.4 to 
35.8 cm/s, the minimum velocity from around 0.1 to 1.3 cm/s, and the maximum velocity from 71.5 to 102.4 
cm/s. The lowest and highest tidal current velocities are recorded in layers 1 and 10. The direction of the tidal 
current velocity is also known to be predominantly oriented from northwest to southeast when transitioning 
from flood to ebb. Meanwhile, the opposite is the case during the transition from ebb to flood. 

 
Fig. 3.  Layer structure of ADCP 

IV. NUMERICAL MODEL 

Numerical modeling is conducted to simulate a time series of the 3-D current velocity distribution in Kelabat 
Bay. The model is also used in simulating flood [9], coastal, estuary, and river processes [10], and 
environmental control [11]. 

In this study, MIKE3 (personal license) is used to determine the velocity distribution to select locations of 
higher magnitude of continuous velocity. Other similar studies at different locations use models such as Delft3D 
[3], Telemac [2], ROMS (Regional Ocean Modeling System) [12], FVCOM (Finite Volume Coastal Ocean 
Model) [13], and MIKE [6]. 

A. Governing Equations 

MIKE3 is a finite-element-based tool. A 3-D hydrodynamic model with sigma coordinates is developed using 
MIKE3. The model solves the 3-D incompressible Reynolds averaged Navier Stokes (RANS) equations, using 
the Boussinesq and hydrostatic pressure assumptions [14]. 

Equation (1) shows the local continuity equation for the model, which is performed in Cartesian and sigma 
coordinates, while the two horizontal momentum equations for the x- and y- components are given by Eqs. (2) 
and (3). 

' '

h hu hv h
hS

t x y




   
   

   
 (1) 

2

0 0

1

' ' ' '

n xya xx
z

o

sp shu hu hvu h u h hg
fvh gh dz

t x y x x x x y

  
   

       
                   

  

 ( )v
u s

v u
hF hu S

h 
 

  
 

 (2) 

2

0 0

1

' ' ' '

n yx yya
z

o

s sphv huv hv h v h hg
fuh gh dz

t x y y y y x y

  
   

       
                    

   

 ( )v
v s

v v
hF hv S

h 
 

  
 

 (3) 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Harman Ajiwibowo et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i4/170904089 Vol 9 No 4 Aug-Sep 2017 3102



where t is the time; 'x , 'y , and   are the modified Cartesian co-ordinates; u , v , and  are the velocities in 

the x , y , and z directions; h is the total water depth;  is the difference from water level to the mean sea level 

(MSL); f is the Coriolis parameter; g is the gravitational acceleration; ap is the atmospheric pressure; o is the 

fluid density; sv is the vertical turbulent viscosity; xxs , xys , yxs , and yys  are the radiation stress components; and 

S is the magnitude of the point sources discharge, with su  and sv  as the velocity of the discharge. 

B. Model Setup 

Numerical modeling is carried out in two stages: regional and local modeling, where both models are 
executed in Cartesian and sigma coordinates. The global model covers Bangka Strait and Karimata Strait, as 
shown in Figs. 4a and 1a (red box). This model aims to produce a valid surface elevation model in the domain. 
Obtaining a valid tidal current velocity model requires a more detailed mesh resolution. In order to optimize the 
computational time, a valid and detailed current velocity model is developed as a local model that only covers 
the middle of Kelabat Bay, as shown in Figs. 4b and 1b (red box).  

The model applies to both offline and online nesting. Offline nesting is performed in the transition from 
global to local model. Henceforth the result of the global model is used to derive the water-level boundary 
condition of the local model. The online nesting is shown with the mesh becoming finer in the area of interest in 
both models. 

The maximum and minimum mesh resolutions of the global model are 2.5 km and 500 m, respectively. 
Moving from the boundary at Karimata Strait and Bangka Strait into the bay, the grid becomes finer. The 
resulting base map from the bathymetric survey combined with a navigational chart map from the Indonesian 
navy was used. The open web application NaoTide was used to develop the tidal fluctuation as the boundary 
condition at the outer boundary of the global model. 

Meanwhile, in the local model, the maximum and minimum mesh resolutions are 1.1 km and 60 m. The local 
model was run to provide a detailed model of the tidal current velocity in Kelabat Bay, which resulted in 11 
layers of tidally induced current velocity. The 11 layers mentioned above are one blank spot layer covering the 
height of the ADCP and a distance of 80 cm above the ADCP and 10 layers of current velocity. This conforms 
to the ADCP 10 measurement cell.  

C. Model Validation 

Model validation is carried out by comparing the model output with the current velocity obtained from field 
measurements. Notably in hydrodynamic modeling, the two most common parameters for validation are the 
surface elevation and current velocity [4]. The errors are calculated with a simple formula as shown in Eq. (4), 
where Numerical Model  is the result of the numerical model and Field Measurement  is the value of the field 

measurement data. 

Numerical Model ResultValue Field Measurement DataValue
Error

Field Measurement MaximumValue


   (4) 

1) Surface Elevation Validation:  The surface elevation model used for the global model is validated in 
two locations, namely at S3 (Dabosingkep) and S4 (Muntok), as seen in Fig. 8. The surface elevation data at S3 
and S4 are obtained from the Indonesian navy database. The data are for the 1-hour free surface elevation. The 
model and its validation consider the period of November 2013, as seen in Figs. 5a and 5b, respectively. Using 
Eq. (4), the errors are 3.94 and 4.95%, which are adequate for validation. 

The surface elevation validation of the local model is performed at S1 (tidal field measurement) as shown in 
Fig. 10. The numerical model result values are validated using 10-minute-interval surface data. The validation 
result is 7.13% error, which is considered to be a good validation, as illustrated in Fig. 5c.  
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Fig. 4.  Mesh of (a) global model and (b) local model 

 
Fig. 5.  Surface elevation validation result (Dabosingkep Station, Muntok Station, and field measurement data are shown in (a), (b), and (c) 

respectively) 

2)  Tidal Current Validation:  The validation of the tidal current model for the global model is carried out at 
locations S5, S6, and S7, as seen in Fig. 4a. The data are also obtained from the current velocity database from 
the Indonesian navy. The locations of the three validation points are Tujuh Island (S5), Amelia Shoal (S6), and 
Nemesis Shoal (S7). The data resulting from the model of the uppermost layer are compared with these 
Indonesian navy data. The error calculation using Eq. (4) gives values of 7.98, 7.27, and 8.57% for the three 
stations, respectively. Figs. 6a, 6b, and 6c show the validation results, which present a good agreement. 

The validation of the local model of tidal current is carried out using field measurement data at location S2 
(see Fig. 4b). The data are available in 10-minute intervals as well as in the 10-layer composition, which gives a 
detailed validation. Fig. 13 shows the validation. Table I shows the validation summary for each layer and the 
average error is 11.4%. From the table it can be seen that the result for layer 7 gives the smallest error. As it is 
relatively far from the sea bed and ocean surface, the effects of both bed resistance and free surface waves do 
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not interfere with the physical current generation. Layers 1, 2, 9, and 10 give large errors since they are close to 
the upper and bottom boundaries. 

TABLE I.  Errors of tidal current validation at every layers 

Layers 1 2 3 4 5 6 7 8 9 10 
Errors (%) 11 11 10.5 10.7 10.7 10.8 10 10.2 11 17 

Average (%) 11.4 

 
Fig. 6.  Results of validation of global model of tidal current velocity (Tujuh Island, Amelia Shoal, and Nemesis Shoal are shown in (a), (b), 

and (c) respectively) 

 
Fig. 7.  The resulting (a) time series and (b) scatter plot diagrams of the validation of the local model of tidal current velocity 
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V. RESULTS AND ANALYSIS 

A. Analysis of Tidal Current Model 

Analysis of the tidal current model is performed to select the potential site for energy harvesting. The analysis 
is carried out using the local model. It consists of observations using the resulting spatial distribution of velocity 
under various tidal conditions (see Fig. 8), scatter plots of the model results at six points in the area of interest 
(i.e. points 1 to 6, as seen in Fig. 9), and velocity cross-sections of three sections, A–A, B–B, and C–C (see Fig. 
9). The presented analysis is intended to give an overview of velocity in the local model. Further, the target 
output is a base for determining the selection of the potential site. 

The spatial distribution of velocity is presented in Fig. 8. The potential velocity is obtained in the spring flood 
condition, in which the highest velocity reaches 1.1 m/s. At the narrowest part of Kelabat Bay, we can see the 
potential velocity not only during the spring flood condition but also during the spring ebb and neap ebb 
conditions. During the neap flood condition, however, the velocity change is not significant. 

The analysis using current scatter plots refers to Fig. 9. Observations are made at six points of interest in the 
outer, narrowest, and inner parts of the bay. The scatter plots of the model results can be seen in Fig. 10. The 
velocity scatter plots at points 5 and 6 do not show a high velocity magnitude, as illustrated in Figs. 10c and 10d. 
In contrast, the other four points, which are located in the middle of the bay, show higher magnitudes of tidal 
current velocity. In particular, point 1 in Fig. 10a and point 2 in Fig. 10b present the most promising sites among 
those studied, with a maximum velocity of 1.2 m/s. These potential sites are considered. 

Referring to Fig. 9, which shows the velocity magnitude cross-sections of three sections, namely A–A, B–B, 
and C–C, it can be seen that the higher velocities are found more or less in the middle part of the bay at the 
narrowest area (cross-section B–B). The velocity in the cross-section B–B is 0.9 m/s, as presented in Fig. 11b. 

 
Fig. 8.  Spatial distribution of tidal current velocity under various conditions 
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Fig. 9.  Location of the interest points and cross-sections 

 
Fig. 10.  The resulting scatter plots for each point of interest (points 1 to 6 are presented in diagrams (a) to (f), respectively) 
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Fig. 11.  Distribution of cross-section velocity under spring flood condition (A–A, B–B, and C–C are given in (a), (b), and (c)) 

B. Power Extraction Analysis 

The energy power calculation is conducted at the five potential sites, which are located in the narrowest part 
of the strait and are called Kelabat 1 to 5, respectively, as seen in Fig. 12a. The depth and tidal current velocity 
characteristic of the Kelabat potential sites listed in Table II are used as the criteria for the turbine selection. The 
depth-averaged tidal current velocity is 0.347 m/s and the average depth is 9.8 m. A Gorlov helical turbine is 
selected. 

 
Fig. 12.  (a) Locations of potential sites; (b) illustration of device operation at Kelabat 

The cut-in speed of The Gorlov Helical Turbine is 0.5 m/s, which is relatively low with good efficiency. 
Other turbine characteristics are given in Table III. The device is mounted on the seabed at a height of 5 m. It 
contains two turbines in one device and allows a minimum clearance of 2.3 m from the Lowest Low-Water 
Level (LLWL) to ensure the safety of boat navigation and other water activities by local people at Kelabat 2, 4, 
and 5. However, at Kelabat 1, only one turbine per device could be utilized. Moreover, Kelabat 2, which had a 
depth of only 3.6 m, was not suitable for any instrument. The LLWL is located at 2.3 m below MSL at all sites. 
The position of the device is illustrated in Fig. 12b. 

Fig. 13 shows the one-year tidal current output resulting from the numerical model of layer 4 at Kelabat 1. 
The figure also shows an example of the magnitude of the extracted current velocities that can move the turbine, 
which are the data values that are above a threshold line. The threshold line is the turbine cut-in speed. 
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TABLE II.  Parameters of the potential sites 

Sites 
Depths 

(m) 
Average 

velocities (m/s) 
Maximum 

velocities (m/s) 
Layers 
covered 

Number of 
turbines 

Total power 
(kWh) 

Kelabat 1 8.4 0.373 1.24 3–8 1 329.71 

Kelabat 2 10.5 0.368 1.08 1–9 2 399.98 

Kelabat 3 3.6 0.347 0.92 Not suitable – – 

Kelabat 4 12.6 0.345 1.14 2–7 2 438.98 

Kelabat 5 13.8 0.304 1.08 2–7 2 328.64 

TABLE III.  Specifications of The Gorlov Helical Turbine 

Parameters Swept area Height Foundation Efficiency Cut-in speed 

Value (per turbine) 2.5 m2 2.5 m Floating structure 31.5% 0.5 m/s 

 

 
Fig. 13.  The resulted threshold of cut-in speed according to current velocity at Kelabat 1 in layer 4 

Power calculation is carried out using Eqs. (5) and (6), where E  is the extracted power,  is the fluid 

density (1025 kg/m3),   is the system efficiency, A  is the turbine swept area, v  is the tidal current velocity, 

and iE  is the power for the i-th layer. The area covered needs to be considered thoroughly, since the layers 

change dynamically with fluctuation of the water level. The considered layers are layers that are covered by the 
turbine area, as given in Table III. The total power is the sum of the power in the turbine-covered layers, as 
illustrated in Eq. (6). The power calculation is conducted for 365 days in 2014. The obtained extracted powers 
are presented in Table III. 

31

2
E A v       (5) 

1 2 ... iE E E E      (6) 

VI. CONCLUSION 

The numerical model of Kelabat Bay presents good agreement with the primary and secondary validation 
data in both the surface elevation validation and the tidal current velocity validation. Further model analysis of 
the tidal current indicates that P1 is a potential location; it contains five trial sites, namely Kelabat 1 to 5. 
Kelabat 3 generates more power than the other sites using The Gorlov helical turbine. 

Further research considering turbines with lower cut-in speeds is needed in order to harvest a smaller current 
velocity. However, we have discovered a potential site that has continuous availability of current, thus offering 
hope of future energy harvesting around Bangka Island. 
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