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Abstract—The paramount challenge in the radar system is to alleviate the consequences of cold 
(homogeneous) clutter, severe dynamic (heterogeneous) hot clutter and jamming interferences while 
estimating the states of targets under track. To surmount this challenge, Space-Time Adaptive Processing 
(STAP) intensify the competence of radar systems. Space-time Adaptive Processing is a two-dimensional 
filtering technique for antenna array with multiple spatially distributed channels. The name 'Space-Time' 
elucidate the coupling of multifarious spatial channels with pulse-Doppler waveforms. The term 
“Adaptive processor” signifies that it can employ using a variety of algorithms on many platforms 
ranging from space satellites to a small low flying unmanned aerial. In order to develop STAP algorithms 
to operate in adverse environments, where intense environmental interference can reduce STAP 
proficiency to detect and track  ground targets. STAP can effectively suppress these interferences and 
maximize the signal to interference plus noise ratio (SINR). Methods such as principal component 
analysis, Multi-stage Weiner Filter (MWF) are applied to STAP system. Rank and Minimum square 
error are parameters considered for estimating the performance of two stated techniques. 

Keywords—STAP (space Time Adaptive Processing), homogeneous clutter, heterogeneous clutter, PC-SD, 
MWF, Rank,  MSE. 

I. INTRODUCTION 

An adaptive processing uses spatial and temporal domains for signal detection ,which offers significant 
advantages in a variety of applications including radar, sonar, and satellite communication [1].The signal 
processing for radar systems uses multiple antenna elements that coherently process multiple pulses. An 
adaptive array of spatially distributed sensors, which processes multiple temporal snapshots, surmount the 
directivity and resolution limitations. Specifically, STAP using STAP  creates an aptness to suppress interfering 
signals while simultaneously conserving gain of the desired signal. Additional gain afforded by an array of 
sensors leads to enhancement  in the signal-to-noise ratio, resulting in an ability to place deep nulls in the 
direction of interfering signals. 

Advanced airborne radar systems are equipped to detect targets in presence of both clutter and jamming. 
The ground clutter scrutinize by an airborne platform is extended in both angle and range and is spread in 
Doppler frequency because of the platform motion. STAP can significantly improve airborne radar performance. 
Computational complexity and the need to estimate non-stationary interference with limited data forces 
considerations of partially adaptive architectures. The STAP computational complexity is driven not just be the 
size of a single adaptive problem, but also by the number of adaptive problems that must be solved per coherent 
processing interval (CPI) [2].Fully adaptive STAP, though optimum given perfect knowledge, is impractical for 
two reasons. First is the computational burden of solving large system of equations in real-time. Second is the 
interference is unknown a – priori and must be estimated from the limited amount of data available during a 
radar dwell. The inherent non-stationary of radar clutter makes this estimation more difficult. Reduced 
dimension STAP Algorithms are required to ease both computation and training support. [3,4,5]. 

This paper utilizes the framework of space time adaptive processing for radar. In STAP, the sensor is 
composed of K elements and each element is followed by J taps spaced at the pulse repetition interval. The goal 
of this N=K  J-dimensional STAP filter is to suppress clutter and interference for the purpose of improving 
target detection. In this paper, we propose that, how adaptive filtering of target signals can be achieved via 
Multi-stage wiener filter and principal component-signal dependent algorithms. Simulations will show that 
MWF generally offer pre-dominant rank and sample support compression than the more commonly used PC-
SD. It is demonstrated that the new multistage wiener filtering technique provides a larger region of support for 
adaptivity. 

 

 

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rizwana Fathima et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S074 Vol 9 No 3S July 2017 477



II. PROBLEM STATEMENT 

    Though SAR image tracking has much application appeal and performed admirably, it’s not without 
shortcomings. Disadvantages to tracking with SAR image processing include delays from image synthesizing, 
overcoming typical image distortion effects and need for classifiers. For example, typical SAR image may need 
3 to 5 seconds to be  synthesized, therefore all target identification and tracking algorithms needs to wait at least 
that long. These factors create an environment where critical information is not produced in “real-time” which is 
crucial for fast decision making. This will explore an alternative – space-time adaptive processing (STAP). 

               It is capable of detecting target returns with information on target range and direction. It has many 
desirable traits: first, it is adaptive, meaning that it can function in any environment because it adapts to the 
environment. Second, STAP is faster than most alternatives such as SAR image tracking because it does not 
require heavy computations. Third, it is relativity simple meaning that it requires no specialized hardware. 
Fourth it is versatile to implement, meaning it can work using a variety of algorithms (such as PC and MWF) on 
many platforms ranging from space satellites to a small low flying unmanned aerial vehicle (UAV).We will 
provide the descriptions of how Reduced Rank Transformation like PC and MWF impact STAP in practice.  

III. SIGNAL MODEL 
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Fig.  1. Description of STAP (a) STAP Data Cube. (b) Block diagram of STAP Algorithm. 

Returns from a pulsed –Doppler radar are collected in a coherent processing interval(CPI) which can be 
represented by a 3-D data cube composed of  N elements , J  pulses and L range gates. The radar data is then 
processed at one  K×J range gate of interest, which corresponds to a slice of the CPI data cube as shown in Fig 
(a). The data is then processed at one range of interest, which corresponds to a slice of the CPI data cube. This 
slice is a J ×K space-time snapshot whose individual elements correspond to the data from the jth pulse 
repetition interval (PRI) and the kth sensor element [2, 6, 7]. Hence this two-dimensional space-time data 
structure consists of element space information and PRI space-Doppler information. The snapshot is then 
stacked column-wise to form the KJ ×1 vector x. [6]  

    If a target is present in the range gate of interest, then the return is composed of components due to the target, 
the interference sources or jammers, clutter, and noise:      

X = Xi + Xc +  X n            (1) 

       If no target is present, then the snapshot consists only of interference, clutter, and white noise. The total input 
noise vector n is given by                        

n = Xi + Xc + Xn.       (2) 

Succinctly stated, most classical STAP algorithms consist of the following steps depicted in Figure (b). 

(i) Estimate the parameters interference covariance matrix and target complex amplitude. 

(ii) Form a weight vector based on the inverse covariance matrix 

(iii) Calculate the inner product of the weight vector and the data vector from a cell under test 

(iv) Compare the squared magnitude of the inner product in step (iii) with a threshold determined according 
to a specified false alarm probability. [1] 

The input noise covariance matrix is then defined to be 

܀ ൌ ۳ሾ۶ܖܖሿ                                 ሺሻ 

Radar detection is a binary hypothesis problem, where hypothesis H1 corresponds to target presence and 
hypothesis H0 corresponds to target absence. Each of the components of the space-time snapshot vector x are 
assumed to be independent, complex, multivariate Gaussian. This snapshot, for each of the two hypothesis, is of 
the form, 

۶ ∶ ܠ ൌ  ܖ

                                       ۶ ∶ ܠ ൌ ܜܠ   ሺሻ                         .ܖ

The KJ× 1-dimensional space-time steering vector v (ϑ1, ω1) is defined as follows: 

ሻܜ,ܜሺܞ ൌ  ሻ                                     ሺሻܜሺ܉  ሻ ܜሺ܊ 

Where b (ωt) is the J×1 temporal steering vector at the target Doppler frequency  ωt and  a (ϑt) is the K×1 spatial 
steering vector in the direction provided by the target spatial frequency  ϑ୲. The notion (.)  represents the  
Kronecker tensor product operator. For convenience in the analysis to follow, the normalized steering vector in 
the space-time look-direction is defined to be 
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࢙ ൌ  
,  ࢚ሺࢂ ሻ࢚࣓

ሻ࢚࣓,࢚ሺࣖࢂሻ࢚࣓,࢚ሺࣖࡴࢂ√
                                      ሺሻ 

The two hypothesis in (4) may now be written in the form   

۶ ∶ ܠ ൌ  ܖ

                                     ۶ ∶ ܠ ൌ હܛ     ሺૠሻ                          .ܖ

Where  ߙ ൌ  The.ߨఝ  is a complex gain whose random phase ϕ  is uniformly distributed between 0 and 2݁ |ߙ|
random vector x, when conditioned on ϕ  , is Gaussian under both hypotheses. The conditional probability 
densities of x are 

ሻܠሺ࣐,ࡴ|ࢄࢌ ൌ  


‖܀‖۹۸ૈ
ሻܛહିܠሺି܍ 

 ሻܛહିܠషሺ܀۶

ሻܠሺ࣐,ࡴ|ࢄࢌ      ൌ  


‖܀‖۹۸ૈ
ܠି܍

 ሺૡሻ              ܠష܀۶

Where  ‖ሺ. ሻ‖   is the determinant operator. The likelihood ratio test then takes the form, 

ࢫ ൌ  
ሻܠሺࡴ|ࢄࢌ

ሻܠሺࡴ|ܠࢌ
ൌ  


࣊

܌ሻܠሺ࣐,ࡴ|ࢄࢌ
࣊




࣊

܌ሻܠሺ࣐,ࡴ|ܠࢌ
࣊



     

 ࡴ

൏
ࡴ

 ሺૢሻ                   ࣁ

Where η is some threshold. Using the densities in (8), the test in (9) becomes 

ࢫ ൌ   ۷ሺ |࢙||ࢻ
|ࢻ|ିࢋሻ|ܠିࡾࡴ

ࡾࡴ࢙ష࢙      

 ࡴ

൏
ࡴ

       ሺሻ    ࣁ

Where ۷ሺ. ሻ is the modified Bessel function of the first kind. The noise covariance matrix R is nonnegative 
definite and the modified Bessel function is monotonically increasing in its argument. Therefore, the test in (10)  
reduces to  

ࢫ             ൌ   ࢙|
|ܠିࡾࡴ    

 ࡴ

൏
ࡴ

    ሺሻ                           ࣁ

Where the new threshold η1  is related to the  previous threshold  η  as follows : 

ࣁ                 ൌ   
۷
ିቀࢻ|ࢋࣁ|

ࡾࡴ࢙షܛቁ

|ࢻ|




.          ሺሻ 

The test in  (11) was the first STAP detection criterion, developed  in the well-known papers by Brennan and 
Reed [8] and Reed, Mallet and Brennan (RMB) [3]. 

1. PRINCIPAL COMPONENT-SIGNAL DEPENDENT : 

Principal Component  uses the Eigen-value decomposition (EVD) to produce a low rank estimate of the sampled 
covariance matrix ࡾଡ଼ .[4, 9, 10, 11, 15, 16, 21]. This lower rank estimate would still be a good approximation to 
the original but it would dramatically reduce the required computer processing power. This  “ speed for 
accuracy” trade off is widely accepted in the industry due to benefit of reduced cost. Consider the MVDR-SMI 
beam former as follows: 

۷ۻ܁,܀۲܄ۻ܅               ൌ ܆܀ 
ି  ቆ

ܛ

܆܀۶ܛ
ିܛ

ቇ           ሺሻ 

ଡ଼ࡾ ൌ  


ࡷ
ൣ,ࢄሺሻ,ࢄ

ࡴ ሺሻ൧                           ሺሻ

ࡷ

ୀ

 

and  K is the number of  training snapshots. An EVD of   ܴ   would be   

ࢄࡾ ൌ  ܞܞࣅ
۶

ࡺ

ୀ

                                                   ሺሻ 

where  λi  and  vi   represent the ith eigen value and eigen vector of  ࡾଡ଼   and N is the total number of degree of 
freedoms. 
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The best reduced r rank approximation of  ࡾଡ଼  is formed by retaining the r  largest eigenvalues and their 
corresponding eigenvectors and eliminate the rest. Therefore 

ࢄࡾ
ሺࡼሻ ൌ  ܞܞࣅ

ࡴ

ࡼ࢘

ୀ

                                                    ሺሻ 

Where  ݎ  is  less than N but contains the principal components of  ܴ୶  or the components with most signal 
power. Selecting the value for  rPC is to find the number of eigen values that are  above the noise floor. One 
assumption from equation (16)  is that the eigen value are ordered from  highest to lowest. Meaning that the 
highest eigen value is at i =1, the next highest eigen value is at i=2, and so forth. 

Principal component signal independent (PC-SI) algorithm is a data dependent signal independent rank reducing 
algorithm. The block diagram of PC-SI system is shown in figure: 2. 

 

Figure: 2 Principal component signal independent 

Principal component signal independent (PC-SI) algorithm is a data dependent signal independent rank reducing  
algorithm. It is considered to be data dependent because the data x  is considered in weight vector calculation. It 
is considered signal independent because the steering vector s is not considered. One advantage of algorithm is 
that it is simple. A disadvantage is that we lose performance by not taking s into account. The PC-SI weight 
vector would be 

  ࡵࡿିࡼ,ࡵࡹࡿ,ࡾࡰࢂࡹࢃ ൌ   ൫ࡾܠ
൯ࡼ

ି
൭

࢙

ܠࡾ൫ࡴ࢙
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ି
࢙
൱      ሺૠሻ 

Another principal component variation is Principal component signal dependent. The block diagram of PC-SD 
is shown in figure: 3. 

 
                                                        

 
 
                                                             
 
 
 
 

Figure 3: Principal component signal dependent 

As the PC-SD take the steering vector s (or main lobe response) into account for rank reduction. The block B is 
a set of vectors that are orthogonal to s (side lobe responses).The steering vector for PC-SD would be 

ࡰࡿିࡼܛ ൌ ܛ െ  ሺૡሻ                                    ܉ܟ۰

Where  wa  is 

ࢇ܅         ൌ   ൫ࡾ܆
൯ࡼ

ି
܌ܢܚ

                                ሺૢሻ 

and   ܢܚబ܌బ   is teh cross correlation vector between z0  and  d0  .The space –time weight vector would be  

ࡰࡿିࡼ,ࡵࡹࡿ,ࡾࡰࢂࡹࢃ ൌ   ൫ࡾܠ
൯ࡼ

ି
൭

۲܁۱ି۾ܛ

۲܁۱ି۾ܛ
ࡴ ൫܀܆

൯ࡼ
ି
۲܁۱ି۾ܛ

൱ ሺሻ 

2. MULTI-STAGE WEINER FILTER 

Rank reduction for Weiner filter is heavily dependent on the cross correlation vector as   

୭୮୲ܟ ൌ బܠ܀
ିଵ ܠܚబబ 

                                            ሺሻ 
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Where the weight vector is a function of both covariance matrix  ܴܠబ  and cross correlation vector  ܠ܀బ  and 
cross correlation vector  ܠܚబ܌బ .  Derived  from the original weiner filter, the multi–stage weiner filter  was 

introduced in [8].Its constrained form structure is shown in figure.4: 

                                              

Fig.4: The filter structure of the  MWF 

In forward recursion ,the filter decomposes the sampled data snapshot x  with a sequence of orthogonal 
projection like B0  [5].Rank reduction can be accomplished by truncating these decomposition stages to a 
desired number  rMWF .The result is a reduced rank transformation basis that  spans  the Krylov subspace instead 
of the eigenvector  basis like  PC.[12,17]. 

                                          ۹൫ܛ, ,ܠ܀ ܚ
൯ܟܕ ൌ ܖ܉ܘܛ ቄܛ, ,ܛܠ܀ ܠ܀

ܛ,… , ܠ܀
൫ିܟܕܚ൯

 ቅ                                                 ሺሻ ܛ

Since, it tailors its basis selection to the desired steering vector s, the  MWF  is able to operate  in a more 
compact subspace than PC. [1] 

After the forward  recursion is completed, the MWF computes a series of scalar weights (w1, w2, etc) at each 
stage  and subsequently combine them to form the overall MWF weight vector. 

ܟܕ܅     ൌ ܛ െ ۰ܟ
ܐ۶  ۰ܟܟ

۶۰
ܐ۶ െ ۰ܟܟܟ

۶۰
۶۰

ܐ۶  ⋯  ሺሻ 

This technique has many desirable properties. First, its main computation operation is the simple vector cross 
correlation. Second, it does not form a covariance matrix which requires substantial computation work [18]. 
Last, it doesn’t need matrix inversion or eigenvector decomposition, both of which are expensive operations [12, 
19,20]. 

RANK COMPRESSION IN MWF: 

MWF offer pre-dominant rank compression than PC. Received data covariance matrix can be decomposed into 

బܠ܀ ൌ ܑܞܑܞૃܑ ۶܄܄
۶                                                                                        ሺሻ

ۼ

ܑୀ

 

MWF does not use the eigenvector basis, instead it uses the Krylov basis or 

ઽ൫ܠ܀, ,܌ܠܚ ܚ
൯ܟܕ ൌ ܖ܉ܘܛ ቄ܌ܠܚ , ,܌ܠܚ܆܀ ܠ܀

 ,܌ܠܚ … , ܠ܀
۴ష܅ۻܚ

 ቅ             ሺሻ܌ܠܚ

Where  ܠܚౚ  is the cross correlation vector between the data x  and desired output d  and  ܟܕݎ  is the set rank 
[21].Expanding   ܠܚౚ   we have  

܌ܠܚ ൌ  હܞ  હܞ ⋯ હۼܞۼ                                                                            ሺሻ 

 

Where  ߙ is the cross correlation coefficient between  the desired signal and the eigenvector  vi . ܠܚౚ   is the first 
basis  of the Krylov subspace. The second is ܀ଡ଼బܠܚౚ .If we expand  ܀ଡ଼బܠܚౚ into  

܌ܠܚ܆܀ ൌ ܞሺહ ۶܄܄  હܞ ⋯ હۼܞۼሻ                                                    ሺૠሻ 

But, eigenvectors are orthonormal to each other except  

with itself, or 

ܞ
ܞࡴ ൌ ሼ

 __ࢌ ൌ 

__ࢌ ് 
  

Thus,                ܌ܠܚ۶܄ ൌ ሾહ, હ,…હۼሿ
 ሺૡሻ                                                              ܂

 

Equation (27) can be simplified to 

܌܆ܚ܆܀ ൌ હૃ
ܞܓ  હૃ

ܞܓ ⋯ હۼૃۼ
 ሺૢሻ                                                    ۼܞܓ

X(k) 
ઽሺܓሻ܌ሺܓሻ

ઽሺܓሻ܆ሺܓሻ  ሻܓሺ܌
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Equations (26) and (29) are the first and second Krylov basis sets. The higher order Krylov basis can be defined 
as 

܆܀
ܓ ܌ܠܚ ൌ હૃ

ܞܓ  હૃ
ܞܓ ⋯ હۼૃۼ

   ሺሻ                                                      ۼܞܓ

Where,  

ܠ܀    
 ൌ  ሺሻ                                                                           ۶܄ܓ܄ 

By observing at equation (30), we find that each of the Krylov vectors is a weighted sum of the eigenvectors. 
This is similar to principal components (PC).In fact if all  αi=1 the resulting rank compression is same as PC. 
Since these weight values are the function of both eigenvalue and the cross correlation coefficient then the 
MWF rank  compression will always be better than or equal to its PC counterpart  because  α i≤ 1. 

       Therefore in Krylov subspace, if rMWF = N then all N Krylov basis vectors are kept and the full N-
dimensional space is spanned. But if rMWF < N   then the Krylov subspace dimension can be reduced based on 
low eigen value, low correlation, or a combination of both. In practice, it is observed that environment with low 
power interferers are well handled by MWF rank compression due to the low ߙߣ

 product. Environments with 
closely spaced interference sources are also good candidate for MWF because their close proximity creates a 
bifurcation into a dominant eigenvector and a weak one. These weaker eigenvectors becomes additional 
candidates for rank compression by the   MWF. 

IV. STAP STIMULATION: 

We examined PC and MWF rank compression for space-time adaptive processing (STAP). As mentioned 
earlier, STAP environment includes three types of undesirable interference signals: jammers, noise, and clutter. 
Figure.4: shows the Eigen spectra of two environments. One environment includes 2 randomly placed jammers 
of 30dB jammer to noise ratio (JNR), 10dB clutter to noise ratio (CNR), noise at 0dB and ICM effects. The 
second environment is the same as the first minus the jammers. 

 
Figure.5: Eigen Spectra 

This eigenspectra reveals the number of significant eigenvalues in the interference covariance matrix. The 
matrix without the jammers (blue curve) is dominated by clutter and this gives us perspective on the role clutter. 
The Brennan’s rule or 

ࢉܚ ൌ ۼ  ሺ ۻ െ ሻ                                                       ሺሻ 

It is a generally accepted guideline when dealing with clutter. It estimates the number of significant eigenvalues 
created by clutter with only three   parameters: the number of elements N, the number of pulses M, and slope β. 
With our simulating parameters in Table.1.The calculated clutter rank is 17. This is near the simulated result of 
18. The added rank could be the result of covariance matrix tapers (CMT). The second curve (red) demonstrates 
the impact of two 30dB JNR jammers on the eigenspectra. As jammer signals contaminates all channels. From 
simulation we see that contamination resulted in many more strong eigen values (i.e. rank). Comparing the two 
curves of Figure 5 we see that adding two jammers have doubled the rank and hence the number of needed 
adaptive degree of freedoms to cancel out the interference.  

Therefore it is highly desirable to implement reduce rank transformations (RRT) to lower processing cost. 

We evaluate the performance of MWF and PC-SD. simulation parameters are defined in Table 1 as follows. 
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Table.1  Simulation Parameters 

PARAMETER VALUE 
N elements 8 

M pulses /CPI 8 

d -Inter element distance λ/2 

Clutter power(CNR) 10dB 

Number of effective jammers 2 

Jammer power (JNR) 50dB 

Noise power 0dB 

β (DPCA mode) 1 

Monte Carlo trials 100 

CMT type ICM 

B 5.7 

wind speed 10Mph 

PRF 1KHz 

fc (carrier frequency) 1 GHz 

Figure .6: shows MWF and PC-SD performance against two jammers located at angles of [-72 23] degrees. 

 
Figure 6: MWF Vs PC-SD 50dB JNR, 10dB CNR 

PC-SD performance reaches lowest MSE at rank of 23; this means it needs 23 adaptive degrees of freedoms 
(ADoF) to suppress the interference to achieve MVDR (Minimum variance Distortion less Response). In 
contrast, MWF only needs 7 ADoF to accomplish the same. Notice that MWF also offers more flexibility in 
rank selection. As graph shows, MWF's MSE performance of ranks from 5 to 17 are all well within 3dB range 
of minimum mean square error (MMSE). This means that the MWF process can stop anywhere within stages 5 
to 17 and still yield acceptable result. This type of flexibility is highly desirable. 

By varying the JNR. While holding CNR at 10dB we decrease the JNR from 50dB (Fig 7 A.) to 20dB (Fig 7 
D.). Figure 7 shows the MSE performances. Rank selection for PC-SD seems unaffected by the JNR changes, 
however MWF shows dramatic changes. 
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7(D) 

Figure.7: MWF  Vs PC-SD for various JNR and Constant CNR. (A)  JNR=50dB,CNR= 10dB. (B) JNR=40dB,CNR= 10dB. (C)  
JNR=30dB,CNR= 10dB. (D)  JNR=20dB,CNR= 10dB 

Table.2 shows the rank selections of MWF and PC-SD. MWF adapts to the interference levels and adjusts to its 
rank selection to received jammer power while PC-SD makes no adjustments. MWF adaptability in this case is 
desirable given that in practical situations the environment is constantly changing. In addition, MWF rank 
selections are less than its PC-SD counterparts which means that it could be done faster. 

Table.2:  RANK Selection for varying JNR 

CASE JNR (dB) CNR (dB) MWF Rank selection PC-SD rank selection 

A 50 10 5-17 16-30 

B 40 10 3-16 16-30 

C 30 10 1-12 16-24 

D 20 10 1-5 9-17 

Figure.8 and Table.3 shows rank selection for environments where CNR varies from 40dB (Fig 8 A.) to 10dB 
(Fig 8 D.) while JNR is constant at 50dB. In this case neither rank selection changes much, however MWF still 
offers lower rank selection. 

Figure.8: MWF Vs PC-SD for various CNR and JNR=50dB 
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Figure.8: MWF  Vs PC-SD for various CNR and Constant JNR. (A)  JNR=50dB,CNR= 10dB. (B) JNR=50dB,CNR= 20dB. (C)  
JNR=50dB,CNR= 30dB. (D)  JNR=50dB,CNR= 40dB. 

Table 3 shows the rank selections of MWF and PC-SD. MWF adapts to the interference levels and adjust to its 
rank selection to received jammer power while PC-SD makes no adjustments. MWF adaptability in this case is 
desirable given that in practical situations the environment is constantly changing. In addition, MWF rank 
selections are less than its PC-SD counterparts which means that it could be done faster. 
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Table.3:  RANK Selection for varying CNR 

CASE JNR (dB) CNR (dB) MWF Rank selection PC-SD rank selection 
A 50 10 5-17 16-30 

B 50 20 5-17 16-24 

C 50 30 4-20 16-24 

D 50 40 5-19 16-21 

CONCLUSION 

    In this paper we showed that MWF offered superior rank compression than PC-SD, especially in 
environments where jammer powers are lowered to 30dB. MWF demonstrated that it can adapt its rank 
selections to the environment but PC-SD did not. MWF did not significantly reduce sample requirements as 
hoped. In all instances, N×M samples were required to have an adequate estimate of the interference covariance 
matrix. There are two things we should clarify. First, generating the MSE performance graphs shown are not 
possible in practice. They are acquired in our simulation because we know exactly what the interference 
covariance matrix is in our simulated environment, but in practice that would require infinite number of samples 
which is practically impossible. As a result, optimum rank selection would be more or less “blind”. Second, the 
majority of ranks did not achieve our desired minimum variance distortion less response (MVDR). In both PC-
SD and MWF, MSE performance degraded further as ranks increased beyond the optimum rank. For case in 
Figure 6, only 12 out of 64 possible ranks yielded acceptable results. If we blindly select our process rank, the 
probability of failure would be 81%.  
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