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Abstract - This document presents the development of an algorithm that predicts the arrival of a 
secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a 
Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing 
neural networks. The algorithm dynamically uses a novel neural network construction technique using 
the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on 
the historical arrival of an SU to estimate future applications; This will allow to manage more quickly the 
information in the BS for the selection of the best channel in CRN as it is placed before the arrival of the 
SUs. As a final result the software application determines the probability of arrival at a future time point 
and calculates the performance metrics to measure the effectiveness of the predictions made. 
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1. Introduction 

Studies by the Federal Communications Commission (FCC) show that the saturation and scarcity of the 
electromagnetic spectrum is due to its mismanagement and not to the scarcity of this resource, which proves that 
the policies implemented to avoid interference between networks and Operators have led to a low actual use of 
the assigned spectrum for some channels and a high use for others1, 2. In this sense, the concept of cognitive 
radio (CR)3 has been proposed as a means of aiding the establishment and implementation of technical solutions 
aimed at benefiting the spectral efficiency in present and future wireless networks in a dynamic way. The RC is 
based on 4 main functions, which are described in4, and the decision-making stage consists of the 
characterization, channel selection and reconfiguration sub-stages of the cognitive nodes. The development of 
this article focuses on the characterization phase, which will focus on the modeling of SU behavior and 
subsequent prediction to determine the probability of arrival of a cognitive node to a central station at a future 
time point; This in order to give an indication to the BS of the type of users and requirements that will have to 
be processed (assign channels). This is intended to reduce the time it takes the BS to assign channels, optimizing 
the system4. Based on this premise, the application of artificial intelligence techniques allows for adapting the 
changes in the arrival behavior of SUs in a BS based on autonomous learning. Taking advantage of this 
property, MLPNN is used and evaluated in order to determine its response to this type of future estimates. 

2. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models that emerged as an attempt to achieve 
mathematical formalizations about the structure of the brain. These imitate the structure of the nervous system, 
focusing on the functioning of the human brain, based on learning through experience, with the consequent 
extraction of knowledge from it. An ANN can be considered a mathematical model of mental and brain activity 
theories, based on the exploitation of parallel local processing and the properties of distributed representation 5. 

3. MLPNN Model for Estimating SU Arrival 

In the following subsections, the process of creation of the algorithm is outlined from a machine learning 
perspective. In the first part, the form of representation of knowledge is presented, in which the form of 
representation of the input and output variables is defined; Later the construction of the architecture of the 
neural network from a dynamic point of view is defined, the neural network changes its topology according to 
the size of the channel occupancy history. Finally, the process of training and validation of the created neural 
network and the metrics to measure the performance of the same is explained. 
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3.1 Representation of an SU history 

ሼxሺiሻ, yሺiሻሽ is defined as a pair of coordinates in R୬∗ଷ, where xሺiሻis the binary representation of a time unit in a 
Space R୬; n is the number of digits in the binary representation and yሺ iሻin a space Rଷ, where the first 
component corresponds to the request or not of a Best Effort type service; The second, the request for a Real 
Time type service and the third the bandwidth required in KHz. An example of this representation corresponds 
to the one shown in the following representation (Equation 1): 

ሼxሺ1ሻ, yሺ1ሻሽ ൌ ሼሾ0  0  0ሿ, ሾ0  0  0ሿሽ 

 
This first approximation of representation of SUs with their respective characteristics considers the neural 
network topology without taking into consideration the nature of the data that are intended to be characterized. 
Because the transfer functions between each layer of the neural network are given by a sigmoid function, the 
range of the data is 0 to 1. This is not considered a problem for the data domain that is intended to characterize 
except for the case of ܴଷwhose third component has domain in the natural numbers (and which corresponds to 
the bandwidth). In this sense, it is proposed to separate the data set (shown above) into two groups and to use 
two neural networks. The first network specializes in the characterization of data set ݕሺ݅ሻଵ, represented as 
described in Equation 2, and follows the design criteria: 

 The number of neurons in the input layer corresponds toܴde ݔሺ݅ሻ. 
 The number of neurons in the output layer corresponds to the dimension ܴଶ of ݕሺ݅ሻ, each of the 

neurons will be specialized in modeling a secondary user characteristic. 
 The number of neurons in the hidden layers is obtained following the geometric pyramid topology. 

 
The second neural network specializes in the characterization of the data set ݕሺ݅ሻଶ,  represented in Equation 3, 
with the following criteria: 

 The number of neurons in the input layer corresponds to ܴde ݔሺ݅ሻ.  
 The number of neurons in the output layer corresponds to the dimension ܴଵ de ݕሺ݅ሻଶ, each of the 

neurons will be specialized in modeling a secondary user characteristic. 
 The number of neurons in the hidden layers is obtained following the geometric pyramid topology. 
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3.2 Mathematical model of the neuronal system 

For the development of the operation of the neural network, the set of examples shown in equation 2 is 
considered. Following the guidelines proposed for the construction of the proposed neural network, we obtain a 
three-layer system with 3 neurons in the input layer, 2 in the hidden layer and 2 in the output layer, a graphical 
representation of this neural network is shown in Figure 1. 

In addition, the following variables are defined: 

݉: Number of layers of the neural network; ߠ: Control weight matrix, which maps (generates an association) 
from one layer ݅ to one layer ݅ + 1; ܣ: activation unit in layer ݅. 

The procedure for calculating the output of the neural network is defined as shown in Equation 4, called forward 
propagation algorithm. 

ሺሻܣ ൌ ݃൫ߠሺିଵሻ்ܣሺିଵሻ൯                                                                 ሺ4ሻ 

where, ܶ is the transposed operation; ܣሺሻis the layer output to be calculated; ܣሺିଵሻ corresponds to the previous 
layer output; ݅ ൌ 1, 2, 3, … . ሺሻܣ ;݉, ൌ ܺ; ݃the sigmoid function. 

Considering the control weight matrixߠሺଵሻ, we proceed to calculate the transition from the input layer to the 
hidden layer (Equations 5 and 6). 

ሺଵሻߠ ൌ ൦

ଵଵߠ
ሺଵሻ

ଵଶߠ
ሺଵሻ

ଶଵߠ
ሺଵሻ

ଶଶߠ
ሺଵሻ

ଷଵߠ
ሺଵሻ

ଷଶߠ
ሺଵሻ

൪(5) 

 

Figure 1. Representation of the MLB for the data set of equation 2. 

ሺଵሻܣ ൌ ܺ ൌ 

ଵݔ
ଶݔ
ଷݔ
൩                                                                            ሺ6ሻ 

Thus, the transition from the input layer to the output layer would be given as described in Equation 7. 

ሺଶሻܣ ൌ 
݃൫ݔଵߠଵଵ

ሺଵሻ  ଶଵߠଶݔ
ሺଵሻ  ଷଵߠଷݔ

ሺଵሻ൯

݃൫ݔଵߠଵଶ
ሺଵሻ  ଶଶߠଶݔ

ሺଵሻ  ଷଶߠଷݔ
ሺଵሻ൯

൩                                                    ሺ7ሻ 

For simplicity, the following variables are defined for the matrix ܣሺଶሻ (Equation 8). 

ሺଶሻܣ ൌ ቈ
ܽଵ
ሺଶሻ

ܽଶ
ሺଶሻ
                                                                          ሺ8ሻ 

When calculating the transition from the hidden layer to the output layer by reference to the control weight 
matrix ߠሺଶሻ (Equation 9 y 10): 

ሺଶሻߠ ൌ ቈ
ଵଵߠ
ሺଶሻ ଵଶߠ

ሺଶሻ

ଶଵߠ
ሺଶሻ ଶଶߠ

ሺଶሻ
                                                                 ሺ9ሻ 

ሺଷሻܣ ൌ 
݃൫ܽߠଵଵ

ሺଶሻ  ܽଶߠଶଵ
ሺଶሻ൯

݃൫ܽଵߠଵଶ
ሺଶሻ  ܽଶߠଶଶ

ሺଶሻ൯
൩                                                      ሺ10ሻ 
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3.3 Flowchart for the Learning Algorithm 

MLPNN Training Diagram is show in Figure 2.A fragment of the MLPNN code for neural network optimization 
is shown in Figure 3. It should be noted that the sequence shown implies the existence of two Theta1 and Theta2 
arrays corresponding to the average weight matrices of the neural network. 

 
Figure 2. MLPNN Training Diagram. 

The algorithm takes the training examples to find the optimal values of Theta1 and Theta2 that minimize the 
error obtained. 

 
Figure 3. MLPNN algorithm. 
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3.4 Neural Network Training 

During the training process of the neural network, the value of the control weight matrices is determined using 
the back propagation algorithm which includes the following guidelines within its algorithm: 

 Randomly initialize the weights of matrices with numbers between -1 and 1. 
 Implement the forward propagation algorithm to obtain A୫for any x xሺiሻ. 
 Calculating the cost Jሺθሻ from equation 11, in order to obtain the difference between the expected 

values and the values obtained, the objective is to have its value approach as close to 0. 

ሻߠሺܬ ൌ െ
1

݉
∗ቀݕሺݔሻ ∗ log൫ሺܣሺ௫ሻ൯


 ൫1 െ ሻ൯ݔሺݕ ∗ log൫ሺܣሺ௫ሻ൯


ቁ                ሺ11ሻ



௫ୀ



௫ୀ

 

 

 Calculate the partial derivatives of 
ௗሺఏሻ

ௗఏೕ
ೖ  in order to minimize the error to the maximum (equation 12).  

ߠ
 ൌ ߠ

 െ ߙ
ሻߠሺܬ݀

ߠ݀
                                                                      ሺ12ሻ 

4. Software Implementation 

To determine the ability and precision of the MLPNN algorithm to calculate the probability of arrival of the next 
SU (with BE or RT and BW type QoS criteria) to the BS, a software application was developed in C#.Figure 4 
shows the creation phase of the request history for BE, RT and BW (for the figure the past behavior is displayed 
requesting BE and RT only). 

 
Figure 4. Software for predicting arrival of SUs (history creation). 

Figure 5, shows an on-screen capture of the second phase of the software, where the two MLPNN neural 
networks are created (the first one specialized in estimating the BW that is likely to request the SU, and the 
second trained to predict the probability of requesting a BE or RT service). 
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Figure 5. Creation stage of the specialized MLPNNs. 

Figure 6 graphically represents the training or learning stage of neural networks. Only the modeling for the 
historical behavior in the BE type requests is shown, where it is clear that the MLPNN manages to establish the 
(past) pattern requested by the SU. 

 
Figure 6. Training phase of the neural network. 

The last phase of the algorithm corresponds to the prediction, which will estimate the future 30% of the 
historical data and compare them with the actual behavior (Figure 7). 

5. Results evaluation 

In order to test the developed proposal, three test cases (from MS Excel) were generated using uniform, Poisson 
and exponential distributions. 

The quantitative results during the training phase for 200 examples are shown in Tables 1, 3, 5; and the 
responses in the estimation of the RT, BE and AB requests are observed in Tables 2, 4, 6. 
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Figure 7. Prediction phase (probability calculation of a QoS request) of the neural network. 

Table 1. Training results for the "exponential distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0,13705 0.04018 

Time (msec) 350856 261833 

Validation Error 0.00027 0.00027 

Success Rate (%) 62 99 

Table 2. Prediction results for the "exponential distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.43791 4,70093 

MSE 0.05005 N/A 

Binary error  N/A 0,47761 

Success Rate (%) 48 72 

Table 3. Training results for the "Poisson distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0.37262 0.17537 

Time (msec) 333243 307682 

Validation Error 0.00205 0.00205 

Success Rate (%) 11 95 

Table 4. Prediction results for the "Poisson distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.44064 0.47060 

MSE 0.00767 N/A 

Binary error  N/A 0.1875 

Success Rate (%) 5 91 
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Table 5. Training results for the "uniform distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Iterations 500000 500000 

Training Error 0.54275 0.29872 

Time (msec) 354977 357718 

Validation Error 0.00205 0.02485 

Success Rate (%) 3 93 

Table 6. Prediction results for the "uniform distribution" test case. 

Metrics 1° MLPNN (BW) 2° MLPNN (BE y RT) 

Cross Entropy 0.90017 4,70093 

MSE 0.10927 N/A 

Binary error  N/A 0,89655 

Success Rate (%) 2 55 

The results found in the prediction suggest that the success percentage is low when predicting the BW to be 
requested by the SU. It should be noted that this metric evaluates that at any time point the expected value is 
equal to the value obtained without any margin of error. In this sense, for example, for the exponential 
distribution (figure 8), it is observed that the neural network identified the pattern, which is why the MSE 
(which in this case shows the difference between the expected and minimum values) is very small and in the 
order of hundredths. 

 
Figure 8. Predicted exponential distribution for variable BW. 

Another characteristic that can be drawn from the system behavior from the response given to the test cases is 
that it was possible to identify patterns for the Exponential and Poisson distributions; However, the "Uniform" 
case, as it did not present a pattern in its historical data, it was not possible to model or predict its behavior. 

6. Conclusions. 

The present paper proposes the development of an algorithm to estimate the probability of arrival of SUs to the 
central station of a cognitive radio network requesting a BE or RT type service, with a certain BW. The results 
show that the system is more efficient when the MLPNN can establish a pattern in the historical sequence; 
Otherwise, the success percentage in the estimation of the next request by an SU may be very low, rendering its 
implementation unviable because the channels reserved by the base station may not meet the characteristics that 
cognitive users will actually require. 

7. References 
[1] Galvis A. Accesodinámico alespectro: Estado actual, tendencias y retos. Journal entre Ciencia e Ingeniería.2008;2(4): 38-57. 
[2] Rodríguez D, Paz H, Bohórquez M. Cognitive radio technology in the UHF band. Journal Tecnura. 2012; 18(39): 138-155. 
[3] Mitola J. Software radios - survey, critical evaluation and future directions, in Proceedings of the National Telesystems Conference 

(NTC 1992). Washington D.C, EE.UU. 1992 May 19-20. 
[4] López D, Trujillo E, Gualdron O. Elementos  fundamentales que componen la radio cognitiva y asignación de bandas  espectrales. 

Journal Información tecnológica. 2015; 26(1): 23-40. 
[5] 5.López R, Fernández J. Las redes neuronales artificiales: Fundamentos teóricos y aplicaciones prácticas. Ed Netbiblo, 2008, ISBN: 

978-84-9745-246-5. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Danilo Alfonso López et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903067 Vol 9 No 3 Jun-Jul 2017 1844




