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Abstract—Feature selection (FS) is a process in which the most informative and descriptive 
characteristics of a signal that will lead to better classification are chosen. The process is utilized in many 
areas, such as machine learning, pattern recognition and signal processing. FS reduces the dimensionality 
of a signal and preserves the most informative features for further processing. A speech signal can consist 
of thousands of features. Feature extraction methods such as Average Framing Linear Prediction Coding 
(AFLPC) using wavelet transform reduce the number of features from thousands to hundreds. However, 
the vector of features involves some redundancy. In addition, some features are similar and do not give 
discrimination to classes. Taking such features into consideration in the classification process will not help 
to identify certain classes; conversely, they will only serve to confuse the classifier and inhibit 
identification of accurate classes. This paper proposes an FS method that uses evolution optimization 
techniques to select the most informative features that maximize the classification rates of Bayesian 
classifiers. The classification rate is also maximized by modeling the features with the proper number of 
Gaussian distributions.  The results of comparative analysis conducted show that the selection based 
individual speaker model gives the best classification rate performance. 

Keyword - Feature Selection, Speaker Identification, Bayes Theorem. 
I. INTRODUCTION 

Research on automatic speech recognition (ASR) has actively been conductedover the past four decades[1]. 
ASR is a tool with many potential applications such as automation of operator-assisted services and speech to 
text systems for hearing-impaired individuals [2]. In speaker recognition systems, the speech signal is 
represented by several features, which play a major part in system design. Karhunen-Loeve transform (KLT) 
based features [3], Mel Frequency Cepstral Coefficient (MFCC) [4], Linear Predictive Cepstral Coefficient 
(LPCC) [5], and wavelet transform-based features [6]-[8] are examples of signal speech features.  

Various approaches have been proposed to reduce the number of features required for speech recognition. 
Paliwal[9] reduced the dimensionality of feature vectors in speech recognition systems and tested the technique 
on four methods. In [10], the Laplacian Eigenmaps Latent Variable Model (LEVLM) used fewer MFCC vectors 
without affecting the recognition rate, and it exhibited better performance than Principal Component Analysis 
(PCA).  Feature frame selection based on phonetic information has also been investigated to increase 
classification rate; however, the exact phonemes cannot be easily extracted [11].  

Joint factor analysis (JFA) [12]-[14]is commonly used to enhance the performance of text independent 
speaker verification systems by modeling speaker and session variability. This work has been extended to i-
vector, which outperforms JFA in terms of complexity and model size [15]. The classification rate increaseswith 
the number of feature frames available for training and testing [16]. However, the performance does not 
continue to improve if more features are added and redundancies exist in the features; consequently, some 
features can be ignored with no effect on recognition performance [17].  

Researchers have also focused on selecting valuable features in speech recognition systems. For example, 
Euclidean distance measure has been used to determine frame rate [18], anentropy-based approach has been 
utilized in speech signal in-frame selection [19], andmaximum likelihood-based feature selection has also been 
investigated [20]. The previous methods select valuable features in speech signals, but they tend to ignore the 
redundancy of features in feature frames. Further, reports indicate that maximizing feature information does not 
lead to a better classification rate [21], [22]. Features should contain minimum redundancy within the selected 
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features in the speaker model [11]. Therefore, valuable features as well as some redundancy should be available 
in the selection to improve performance. In this context, searching for such features requires a heuristic random 
search and evolutionary computation techniques. 

In general, the Gaussian Mixture Model [23] is used to model features in speaker models for speaker 
identification, usually by means of 5–10 Gaussian densities.  In this method, all features are forced to have a 
specific number of Gaussians.  However, the classification rates vary according to the number and type of 
Gaussian. An iterative process for choosing the final estimation with the highest likelihood [24] has also been 
investigated. Various other methods have also been proposed [25]-[27] to estimate the optimal number of 
mixtures; however, they estimate the optimal number of mixtures only between two values (minimum and 
maximum). According to the nature of features, some features require higher/lower Gaussian densities than 
other features for accurate modeling. 

Feature extraction methods transform the speech signal from the time domain into another feature space 
domain, with the coefficients in the new domain being less than the frame size of speech signal. The process of 
transformation produces a set of features representing the speech signal; however, some features produced in the 
speaker models do not give effective distinction to classes. This paper proposes a method that improves 
classifier performance by removing and preserving redundancy in features within the same class and among all 
classes in speaker identification systems, regardless of the feature extraction method employed. The proposed 
feature selection method is based on the available features that maximize the classification rate. The selection 
can be achieved individually (each class has its own set of features) or globally (classes settle on a set of 
featuresas a group).  

Determining the effective set of features is achieved by using the Particle Swarm Optimization (PSO) 
evolutionary optimization technique. We also use PSO to determine the optimal number of Gaussian densities in 
order to model each feature in the feature vector space that leads to a better classification rate when coupled 
with wavelet-based feature extraction methods[28] and the Bayes classifier.  PSO was proposed in [29], [30] for 
feature selection in speaker verification systems using a binary classification process. In that work, the selection 
was considered from different aspects of the speaker identification system, and the selection process was 
realized on all speaker models, and the best featuremodels chosen.  

The length of the feature vector at the input of the classifier is crucial in the classification process; these 
features contribute the most to recognition rate in the classification. There is no gain to consider extra feature in 
the classification process unless they are informative. In this paper, we propose a method that selects the most 
informative features for a given feature vector. Two selection approaches are presented: first, all classes settle 
on a group of features that maximize classification rate; second, each speaker model selects its own set of 
features that are different from other speakers. Further, features are modeled as one or two Gaussian densities 
considering extraction of features using AFLPC [28]. Consequently, selection of the exact number of Gaussian 
densities that maximize classification rate is also considered in this paper. 

The remainder of this paper is organized as follows.Section IIdiscussesthe wavelet-based feature AFLPC. 
Section III outlines the proposed feature selection method. Section IVpresents the experimental results 
obtained.Finally, Section V concludes this paper. 

II. THE AFLPC FEATURE EXTRACTION METHOD 

Wavelet packets can be used to extract additional features to guarantee a higher recognition rate. Avciet al. 
[31] proposed a method that calculates the entropy value of the wavelet norm in digital modulation recognition.  
A robust speech recognition scheme that uses wavelet-based energy as a threshold for denoising estimation has 
also been proposed for noisy environments [32]. Wu and Lin [33] proposed a method that uses the energy 
indexes of Wavelet Packet (WP) for speaker identification. Entropy calculation for the waveforms at the 
terminal node signals obtained from Discrete Wavelet Transform (DWT) has also been used in speaker 
identification [34].  

Avci[35] investigated a feature extraction method for speaker recognition based on a combination of three 
entropy types (sure, logarithmic energy, and norm) was investigated.  Daqrouq and Al Azzawi[28] and Wu and 
Lin [36] also proposed using DWT w instead of the Discrete Cosine Transform (DCT) to solve the problem of 
high frequency artifacts being introduced as a result of abrupt changes at window boundaries. The features 
based on DWT were chosen to evaluate the effectiveness of the selected feature for speaker identification [28], 
[37]. Several levels of DWT approximation sub-signals exhibited good performance in the presence of Additive 
White Gaussian Noise (AWGN) [37].   

Before the feature extraction stage, the speech data are processed by a silence-removing algorithm followed 
by application of a pre-processing technique. In AFLPC, features are extracted from theܼframes of each WT 
speech sub-signal:  {ܷ௤(ݐ)} = ,(ݐ)௤ଵݑ} …(ݐ)௤ଶݑ .  (1){(ݐ)௤௓ݑ
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whereܼ is the number of considered frames (each frame of 20ms duration) for theݍ௧௛ WT sub-signalݑ௤(ݐ) 
and ݐis the discrete time. The average of the LPC coefficients calculated for theܼframes ofݑ௤(ݐ)is utilized to 
extract a wavelet sub-signal feature vector as follows: ௤݂ = ∑ ((ݐ)௤௭ݑ)ܥܲܮ ଵ௓௓௭ୀଵ                                                  (2) 

 
The feature vector of the entire given speech signal is  ܥܲܮܨܣ = { ଵ݂, ଶ݂, … . , ொ݂} (3) 
In this paper, the combination of AFLPC and WP is denoted WPAFL and that of AFLPC and DWT is 

denoted DWTAFL. 
III. FEATURE SELECTION 

A. Feature Modeling 

In AFLPC, features are extracted from the speech signalbased on wavelet transforms. A naïve Bayes 
classifier can then be used to perform recognition, and the distribution of features can be modeled as a 
Gaussian—the distributions of some selected features are shown in Fig. 1(a). However, some features can also 
be modeled as two Gaussians, as shown in Fig. 1(b). These two models are sufficient for realization of 
classification after determining the indices of the features in order to consider the exact model, as will be shown 
in the results obtained.  
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(b) 

Fig. 1: Feature (AFLPC) distributions of speech signals (x-axis: feature value, y-axis; repetition):  
(a) Features can be modeled with one Gaussian. (b) Features can be modeled with more than one Gaussian. 

In AFLPC, some features should be modeled as one Gaussian and other features with more than one. The 
choice is crucial for building likelihood functions as better representation of features leads to better 
classification rates. For the Bayesian fusion process, let ଵ݂, ଶ݂ …	 ொ݂be features that have been produced from 
AFLPC, andܥଵ, ଶܥ ௠ܥெbe the available classes. The probability ofܲ൫ܥ	… ଵ݂, ଶ݂ …	 ொ݂⁄ ൯is calculated using Bayes 
rule: ܲ( ஼೘௙భ௙మ . . . ொ݂) = ௉(௙భ௙మ…..௙ಿ)௉(஼೘)∑ ௉(௙భ௙మ…..௙ೂ/஼ೕ)௉(஼ೕ)ಾೕసభ    (4) 

where Q is the total number of features in AFLPC, M is the total number of available classes, 
andܲ൫ ଵ݂, ଶ݂ …	 ொ݂ ⁄௠ܥ ൯is the likelihood function.  Surprisingly, the Naive Bayes model performs well, even in 
situations where independence assumptions are clearly false [38]. Using the assumption of conditional 
independence to reduce the number of parameters, we get ܲ൫ܥ௠ ଵ݂, ଶ݂ …	 ொ݂⁄ ൯ = 	 ∏ ௉	(௙ೖ ஼೘⁄ )	௉	(஼೘)ೂೖసభ∑ ௉൫௙భ,௙మ…	௙ೂ൯	௉൫஼ೕ൯ಾೕసభ   (5) 

The Posteriorܲ൫ܥ௠ ଵ݂, ଶ݂ …	 ொ݂⁄ ൯is computed by multiplying the feature probabilities in the speaker signal. 
Features are modeled as one Gaussian or a mixture of Gaussians (two Gaussians) according to the nature of the 
feature.ܲ(ܥ௠)is the prior probability of class ݉, it is assumed that all classes are equally likelyܲ(ܥ) = 	1 ݉⁄ . ∑ ܲ( ଵ݂ ଶ݂ … . . ொ݂/ܥ௝)ܲ(ܥ௝)ெ௝ୀଵ  is a normalization term. The maximum a posterior probability (MAP) is used to 
estimate the speaker class Ci that maximizesܲ(ܥ௜ ଵ݂, ଶ݂ …	 ொ݂⁄ ): 

arg݉ܽݖ௜	 ൞ܲ	൮ܥ௜ ଵ݂, ଶ݂ …	 ொ݂൘ ൲ൢ   (6) 
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B. Evolutionary Optimization of the Classifier 

Choosing the number of Gaussians for the feature vector cannot be achieved by observing every single 
feature and deciding on the number of suitable Gaussians in the feature model. There should be an iterative 
process to settle on the most suitable number of Gaussians. With this in mind, we considered more advanced 
methods that focus on minimization of the classification error (maximization of classification rate). 
Consequently, we decided on evolutionary optimization or population-based optimization owing to the 
flexibility of the fitness function supported by the nature of the optimization process. 

To make the fitness function fully reflective of the performance of the classifier (so that the classifier can be 
effectively optimized), we determine the number of Gaussian mixture distributions݆ (one or two) in the feature 
vector ଵ݂, ଶ݂ …	 ொ݂for a given speech signal in the classesܥଵ ெ, where  ݆1ܥ	− − ொ஼ଵ − ܯ = arg ݆maxܴ                                             (7) 

The classification error is minimized or the classification accuracy (ܴ)is maximized. In other words, we look 
for the number of Gaussians݆in each feature, in each speech signal, in the training set that maximizes the 
classification rate ܴ. (In our experiments, we use PSO owing to its simplicity, relatively low computing 
overhead, and high effectiveness. 

In certain locations of features ଵ݂, ଶ݂ …	 ொ݂, the statistics for these features are alike for all classes and some of 
them do not give discriminations to classes. Considering such features in the classification process will not 
enhance recognition decisions but instead may minimize the probability of some classes or increase the 
probability of other classes in which misclassification might occur.  

We wish to maximize the classification ܴ based on the available feature set. Therefore, a process that will 
select the most effective set of features that discriminate all classes is required. Reducing the number of features 
while increasing the classification rate reduces system complexity. Thus, the question is whether to consider f or 
not in the classification process. The number of features is minimized in all classes, but these features are 
considered more representative in the sense that the probability of the desired class will increase and the 
probability of other classes will decrease. PSO is also used for maximization problems. ܨ௦ ଵିெܥ = arg ݆maxܴ⁄ ൛	ܥ௦ܨ. ଵ݂, ଶ݂ …	 ொ݂ൟ  (8) 

It should be noted that the indices of Fs are the same for all speakers.  The posterior of all speakers m (Eqs. 5 
and 6) will be calculated for given selected features Fs. The number of selected features nis determined by the 
optimization process. It can also be noted that there are distinctive features for individual speakers that are 
different in indices from other speakers. With this in mind, each speaker (class) can have its own selected 
features that maximize the classification rate for that particular class. In this case, the selection process is more 
complex in terms of number of features as each class has its own selected features compared to the problem in 
Eq. 7.  To reduce the optimization complexity, the number of selected features is first predetermined in each 
class. Then, PSO can be executed to maximize R, with the result being a group of selected features for each 
class. It is not necessary for the indices of the features to be the same for all classes.  

We considered three cases:  
1)  Features are modeled as one Gaussian: In this case, R is maximized with regards to features ଵ݂, ଶ݂ …	 ொ݂.  

The most representative featuresܨ௦are considered by running PSO on the training set. Feature ௜݂is either 
selected and itsܲ( ௜݂ ⁄(௠ܥ  considered in Eq. 5 or ignored andܲ( ௜݂ ⁄(௠ܥ considered as one for allܥ௠. In the worst 
case, if the selection does not produce a better classification rate, it will at least give the same performance with 
fewer features, which in the end affect system complexity. 

2)  Features are modeled as one or two Gaussians: In this case, ܴ is maximized with regards to 
features ଵ݂, ଶ݂ …	 ொ݂, as in case 1, and when considering ௜݂the suitable models (one or two Gaussians) is also 
considered in the optimization process.  

3)  Considering feature modeling in case 2, each class has its own selected feature set. Here, the number of 
features is given before running PSO. If n features of each class are assumed to be selected among ଵ݂, ଶ݂ …	 ொ݂, 
then the number of parameters that have to be optimized is ݊	 ×   .ܯ	

Note that considering more than two Gaussians will not improve the classification rate as most features are 
distributed normally and few of them have the nature of bimodal Gaussian distribution, as shown in Fig. 1. 
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IV. EXPERIMENTS AND RESULTS 

The experimental setup was as follows: speech signals were recorded via a PC sound card at a spectral 
frequency of 4000 Hz and sampling frequency of 8000 Hz. Forty-seven persons participated in the recordings. 
Each participant recorded a minimum of 20 different utterances in Arabic. The age of the speakers ranged from 
20 to 45 years and the participants comprised 25 male and 22 females. The recording process was provided in 
normal university office conditions. The speech signals data set was split into training set (496) and test set 
(530). Two speech signals in the training set for all classes were left for feature selection using PSO and the rest 
were used to form likelihood functions. It should be noted the presented method improve the classification rate 
of existing feature extraction methods to provide the informative features to the classifier.  

A neural network was also used to evaluate the feature selection performance. The same optimization process 
was used to optimize the number of considered features at the input of the neural network. The features 
produced from AFLPC were fed directly into the input of a probabilistic Neural Network.  

For PSO, the size of the population was set to 25 and the number of iterations was set to 100; we 
experimentally found that this number was sufficient to achieve the convergence of the method (Fig. 2). PSO 
has been shown to be robust and effective in solving the optimization problem. The values of the cognitive 
acceleration coefficient and the social acceleration coefficient were set to 0.5 and 1.25, respectively. These two 
values are commonly recommended in the literature (see [39]). PSO is used because it outperforms other 
heuristic search methods (i.e., Genetic algorithms) in terms of convergence speed and complexity [29]. 

 
Fig 2. Sample of PSO Convergence 

A. Case 1: 

Table 1 shows the classification rates of various feature extraction methods considering two classifiers, Bayes 
classifier (BC) and GMM, and the probabilistic neural network (PNN), along with the number of features 
obtained for PSO. The performance of all the feature extraction methods improved using feature selection by 
considering fewer features. In our evaluation of the proposed method, several published methods were analysed. 

Feature extraction such as Wavelet packet and Shannon entropy (WPS) [37], wavelet packet and Log energy 
entropy (WPLE) [35], MFCC and GMM (MFGMM) [23], WPAFL, DWAFL, as well as the fusion between 
WPAFL and DWAFL (FWAFL) were used to test the proposed method.  In general, there were improvements 
in the classification rates regardless of the feature extraction method and the type of classifier. AFLPC can be 
reduced by as much as 50%, with at least the same performance in terms of classification rate. The choice of 
classifier has no effect as feature selection improves the classification rate for NN. The speaker identification 
system is consequently less complex as the number of features at the input of the NN is approximately 50%.  
MFCC with GMM has the best performance with classification rate reaches 0.9815.  
B. Case 2: 

Table 2 shows the feature selection performance achieved for one Gaussian, two Gaussians, and a group 
comprising one and two Gaussians. The optimization process determines the number of Gaussians that should 
be considered in the realization. As in case 1, the feature reduction is as much as 50% for the AFLPC methods, 
with improvements of 3.04% and 1.55% for DWTAFL and WPAFL, respectively. Note that the more features 
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of the AFLPC (FWAFL) method there are, the better the performance with respect to classification rates, more 
information is provided to classes. 

TABLE 1.  Feature Reduction and Classification Rates for Case 1 (no PSO: no optimization). 

Feature 
extraction 
Method 

Number 
of 

features 

Train 
no PSO 

Train 
PSO 

Test 
no PSO 

Test 
PSO 

Number of 
selected 
Features 

(percentage, %) 

Classifier Improvement 
(%)* 

DWTAFL 186 0.9906 1 0.8810 0.9254 143 
(76.9%) 

BC (one 
Gaussian) 

5.04% 

WPAFL 186 0.9662 0.9919 0.9093 0.9375 96 
(50.6%) 

BC (one 
Gaussian) 

3.10 

FWAFL 372 0.9700 1 0.9355 0.9758 184 
(49.4%) 

BC (one 
Gaussian) 

4.31% 

MFGMM 42 0.9962 0.9962 0.9733 0.9815 24 
(57.1%) 

BC (5 
Gaussians) 

0.84% 

WPS 127 0.9662 0.9457 0.6039 0.6334 56 
(44.1%) 

PNN 4.88% 

WPLE  64 0 .9962 0.9962 0.5282 0.5338 40 
(62.5%) 

PNN 1.06% 

WPAFL 930 1 0.9944 0.9254 0.9274 518 
(55.7%) 

PNN 0.21% 

* (Test PSO - Test no PSO)/Test no PSO 

TABLE 2.  Feature Reduction and Classification Rates for Case 2. 

Feature 
extraction 
method  

No of 
features  

Train  no PSO  Train PSO 
(Mix) 
features: 
(# GMM) 

 Test no PSO Test 
PSO 
(Mix) 
No 
selection 

Test PSO 
Feature 
Selection 

No. of 
selected 
Features 
(%) 

Improve
ment 
(%) 
* 

1GMM 2GMM 1GMM 2GMM 

DWTAFL 186  0.9906 0.9906 0.9905 
92: (1GMM) 
94: (2 GMM) 

0.8810 0.8156 0.9254 0.9274 145 
(77.8%) 

5.27% 

WPAFL 186  0.9662 0.9662 0.9662 
92: (1GMM) 
94: (2 GMM) 

0.9093 0.9073 0.9375   0.9395 104 
(55.9%) 

3.32% 

FWAFL 372  0.9700 0.9700 0.97000 
172: (1 GMM) 
200: (2 GMM 

0.9355 .9355 0.9758 0.9778 193 
(51.8%) 
 

4.52% 

   * (Test PSO Feature Selection - Test no PSO (1 GMM) )/ Test no PSO (1 GMM). 

For feature selection in this situation, we not only get better performance but also a reduction in the number 
of features used in the classification process. It was found that modeling the features with more than two 
Gaussians will not improve the preface of classification rate as the best models of most features will be 
modeling with only one Gaussian. 
C. Case 3: 

In this case, the number of parameters (selected features) was increased as each class had n number of 
selected features. In another words, each class settled on a set of features that discriminate it the most from other 
classes; the selected features in each class may overlap with other selected features in other classes (overlap 
means that the indices of the selected feature could be the same). Table 3 shows the performance of the AFLPC 
methods at n = 160 for DWTAFL and WPAFL and n = 180 for FWAFL, the performance is improved when 
each class selects its own set of features (local) in contrast to all classes settling on a set of features (global). 
Allowing the class to choose its selected features offer advantages over features that are selected from all 
classes, as can be seen in Fig. (3). It should be noted that the solution of the global feature is considered to be 
the initial population for the local features. Note also that there will be slight improvements in R after n = 80 for 
DWTAFL and WPAFL and after n = 100 for FWAFL. The complexity is increased as the number of features in 
the optimization process is increased (47× n). 
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I PSO does not guarantee an optimal solution, but the results show that there groups of features that improve 
the classification rate when they are selected exist regardless of the feature extraction method and the type of 
classifier used. The best performance was 98.59% for FWAFL in local feature selection at n = 180 for each 
class, with a total number of features at 8460. Genetic algorithm (GA) is also tested for FWAFL, the best 
performance was 97.98% when n = 240 (11280). 

TABLE 3.  Feature Reduction and Classification Rates for case 3 at n = 160 (DWTAFL, WPAFL) and 180 (FWAFL). 

Feature 
extraction 

method 

Number 
of 

features 

Train 
no 

PSO 

Train 
PSO 

(local) 

Test 
no PSO 

Test 
PSO 

(global) 

Test 
PSO 

(local) 

Number of 
selected 

n (global) 
n × M (local) 

Improvement 
%* 

DWTAFL 186 0.9906 0.9887 0.8810 0.9254 0.9375 160 (global) 
7520 (local) 

6.41% 

WPAFL 186 0.9662 0.9587 0.9093 0.9214 0.9415 160 (global) 
7520 (local) 

3.54% 

FWAFL 372 0.9700 0.9887 0.9355 0.9758 0.9859 180 (global) 
8460 (local) 

5.34% 

        * (Test PSO Feature Selection (local) - Test no PSO)/ Test no PSO 
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(c) 

Fig. 3: number of selected features vs classification rates: (a) DWTAFL, (b) WPAFL (c) FWAFL 

V. CONCLUSION 

In this paper, features that are more informative among classes were selected and considered in the 
classification process. Selection of features resulted from maximizing the classification rate. An evolutionary 
optimization technique (PSO) was used in the selection process. Feature selection guarantees at least the same 
performance with fewer features, especially when there is redundant information in the features. Feature 
extraction methods such as AFLPC produces features with redundant information. Further, some features are 
uninformative, in that they do not enhance the classification rate. Consequently, ignoring such features enhanced 
the performance of the Bayes classifier. Bayes classifier is sensitive when modeling features, but choosing the 
right number of Gaussian models in the feature selection, eventually improved its performance. In AFLPC, a 
50% feature reduction rate was achieved with no impact on the classification rate. Each class was also identified 
by its own set of features. The best classification rate was 98.59% for FWAFL in local feature selection. 
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