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Abstract -This paper analyzes fundamental ideas and concepts related to neural networks, which provide 
the reader a theoretical explanation of Long-Term Memory (LSTM) networks operation  classified as 
Deep Learning systems, and to explicitly present the mathematical development of Backward Pass 
equations of the LSTM network model presented in the book, Supervised Sequence Labeling with 
Recurrent Neural Networks [1]. This mathematical modeling associated with software development will 
provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed 
users in wireless cognitive radio networks. 
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I. NEURAL NETWORKS 

Neural networks (ANNs) are models of artificial intelligence that, inspired in biological neurons, can be used 
in classification, optimization, pattern recognition, function approximation tasks, etc.They are considered 
powerful learning models [2] and are characterized by having in its structure a set of nodes or units called 
neurons (interconnected processing drives) and connections equipped with weights (associated determined 
importance and in which most of the knowledge that the neural network has on the task in question is usually 
kept[3]). As a statistical model, an ANN can learn the probability density function from the given samples and 
then predict, according to the statistics learned, outputs for new samples that were not included in the (sample) 
learning set [1]. 

Each neuron receives a series of inputs through interconnections and emits an output. This output can be 
modeled as the result given by composing three functions (Fig. 1): 

Propagation or excitation function. It is a linear function that usually is the weighted sum of inputs and their 
respective weights. 

Activation function. It is almost always sigmoidal: ሺ1 ൅ ݁ିଵሻିଵ o tanh ሺݔሻ. 

Transfer (or output) function.Usually to simplify, it is assumed for practical purposes to be the same as the 
identity function (i.e., the previous two functions would be enough). 
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Fig. 1.Generic model of an artificial neuron [4] 

Whenever a value is typed in to the network (from the training set), an output is generated, therefore a 
function must be considered that enables quantifying the errors made and, depending on that, know if it is 
necessary to modify the weight values to minimize the error given by the network (i.e., until the network outputs 
are as close as possible to the reality that is being simulated). The process by which these weights are adjusted is 
known as training, and the procedure is applied as a learning algorithm. The ability to produce correct outputs 
for inputs not seen during training is known as generalization) [3]. 

An ANN is a network comprised of units called neurons which are related in some way. In order to give a 
more formal definition (from the mathematical point of view) we use the concept of graph. 

Definition:A neural network (ANN) as in Fig. 2 is a directed graph with the following properties 

1. EveryI node has an associated x_i state. 

2. Every connection between two nodes (i and j) is assigned a weight w_ij ∈ ܴ 

3. For each i node there is a thresholdߠ௜. 

4. For each i node a function f_i is defined, which depends on the weights of its connections, the threshold, 
and the states of the j nodes connected to it. This function ௜݂ሺݔ௝, ,௜௝ݓ  .௜ሻprovides the new state of the nodeߠ

 
Fig. 2: Standard model of an artificial neuron [4] 

A wide variety of ANNs have been developed, but can be classified, by type of connections in two groups: 
with cycles and without cycles. This research paper briefly discusses the multilayer perceptron (MLP), which is 
a type of feed forward neural network without cycles; as well as some basic ideas about the RNNs), to finally 
focus the study on LSTM networks, which is the purpose of this work. 

A. Multilayer Perceptron (MLP). 

MLP is an ANN whose topology (structure in which neurons are organized) is characterized by grouping 
neurons of the same type in substructures called layers (input, hidden, output) as shown in Fig. 3; connections 
between neurons only allow the flow of information in one direction (forward, so the neurons that are in the 
same layer are not related) and these can be totally or partially connected. MLPs are suitable for pattern 
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recognition and prediction tasks, and are considered universal approximations of functions (especially in higher 
dimensions [1]), since their outputs depend only on the current inputs (or of the moment). 

 
Fig. 3: Structure of a multilayer perceptron [6] 

From here on, the total number of layers hidden in the MLP will be denoted by L; and the weight assigned to 
the connection between the neuron i of layer k and neuron j of layer ݇  ൅  1, by ݓ_݆݅ ^ ሺሺ݇ሻሻ; The other 
notations are found in Table I. 

TABLE I.  Mathematical nomenclature of an MLP network 

 Input layer Hidden layer Output layer 

Subscript ݅ ݄ ݇ 

Input ݔ௜ ܽ௛
ሺ௟ሻ ܽ௞ 

Output ݔ௜ ܾ௛
ሺ௟ሻ ݕ௞ 

Number of units ܪ ܫ௟ ܭ 

The most common choices for activation are function j, due to its non-linearity (it allows reducing problems 
with multiple hidden layers to one with a single hidden layer) and differentiability (allows training the network 
with descending gradient) these are the functions: 

tanhሺݔሻ ൌ
݁ଶ௫ െ 1

݁ଶ௫ ൅ 1
 

and 

ሻݔሺߪ ൌ  
ଵ

ଵା௘షೣ
       (Logistic function) (1) 

 

where the first derivative of these two functions are: 

ሻݔᇱ  ሺ݄݊ܽݐ ൌ 1 െ  ሻݔଶ ሺ݄݊ܽݐ

and 

ሻݔሺߪ ൌ ሻ൫1ݔሺߪ  െ  ሻ൯ሺ2ሻݔሺߪ 

In summary, we have the following notation for the h-th neuron of layer l: 

ܽ௛
ሺ௟ሻ
ൌ ෍ ௜௛ݓ

௟ିଵܾ௜
ሺ௟ିଵሻ

ு೗షభ

௜ୀଵ

ሺ3ሻ 

ܾ௛
ሺ௟ሻ
ൌ ௛ሺܽ௛ߠ

ሺ௟ሻ
ሻ  (4) 

It is said that an ANN has learned if you can set the error found in its outlets is minimal. Thus, the main 
purpose of applying neural networks in a problem (that could be to characterize PUs in cognitive networks ) is 
to minimize the function of E error that depends "only" on the weights W_ij ^ ((k)) (if there are activation 
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thresholds, the function would also depend on its values). Generally, E is defined as the mean square error 
between the current output and the desired output: 

ܧ ൌ
1

2
෍ሺ ௜ܵ െ ௜ܻሻ

ଶ   ሺ5ሻ

௡௞

௜ୀଵ

 

where, si are the test values ("real\data" of the situation); the yi are the neuron outputs of the output layer, i.e. 

௜ݕ ൌ  ܾ௜
ሺ௄ሻ [1]. 

To train the MLP, the gradient descent algorithm is almost always used, which in principle indicates that 
when the weights have to be modified, it is done in the opposite direction of the derivative (this informs about 
the behavior of the function in a given point) since to go against the derivative assures us that the function 
values studied will decrease. 

The idea behind the descending gradient in an MLP is to find the derivative of the error function with respect 
to each of the weights ܹ_݆݅ ^ ሺሺ݇ሻሻ, then modify those weights in the opposite direction to the derivative; more 

precisely, what is done is to subtract from the weight ௜ܹ௝
ሺ௞ሻ
ߙ– or݁ݑ݈ܽݒ݄݁ݐ

డா

డ௪
೔ೕ
ሺೖሻwhereα< 1(reason for learning). 

The partial derivative is taken because it represents the error variation when modifying a single variable, and to 
calculate the gradient efficiently, the technique known as Backpropagation is normally used. 

B. Backpropagation para MLPs. 

This kind of algorithm can be interpreted as the mathematical heart of ANNs and is not only used to train 
feedforward networks like MLP, but can be adapted for RNNs; the LSTM model uses an adaptation of it in its 
learning, because of this it is necessary to understand how the method works. 

Backpropagation consists of repeatedly applying the chain rule for partial derivatives, and the first step 
consists of the derivatives of the loss function (or error) E with respect to the output neurons. For calculations 
presented in this document, the sigmoid function given in equation 1 is adopted as activation function θ_j; 
therefore: 

ܾ௛
ሺଵሻ

ൌ ൫ܽ௛ߪ
ሺଵሻ൯ߪ ൭෍ݔ௜ݓ௜

ூ

௜ୀଵ

൱                                 ሺ6ሻ 

ܾ௛
ሺଵሻ

ൌ ߪ ቌ ෍ ܾ௜
ሺ௟ିଵሻ

ுሺ೗షభሻ

௜ୀଵ

௜ݓ
ሺ௟ିଵሻ

ቍ , ݈ ൌ 2,3, … ,  ሺ7ሻ                                                                    ܮ

௞ݕ ൌ ௛ܾߪ
ሺଵሻ

ൌ ߪ ൭෍ܾ௜
௅

௅

௜ୀଵ

௜௞ݓ
ሺ௅ሻ
൱  ሺ8ሻ 

Thus, taking into account equations 1 and 2, and applying the chain rule of calculation in several variables to 
equation 8, we have: 

ܧ߲

߲ܽ௞
ൌ෍

ܧ߲

௝ݕ߲

௄

௝ୀଵ

௝ݕ߲

߲ܽ௞
     ሺ9ሻ  

௝ݕ߲

߲ܽ௞
ൌ ௞ሺ1ݕ െ      ௞ሻ                                      ሺ10ሻݕ

In addition to the above, the following notation will be used for any unit j in the neural network: 

௝ߜ
ሺ௟ሻ
ൌ

ܧ߲

߲ ௝ܽ
ሺ௟ሻ
   ሺ11ሻ 

Thus, for units in the last hidden layer, we have: 

௛ߜ
ሺ௟ሻ
ൌ

ܧ߲

߲ܾ௛
ሺ௅ሻ

߲ܾ௛
ሺ௅ሻ

߲ܽ௛
ሺ௅ሻ

ൌ
߲ܾ௛

ሺ௅ሻ

߲ܽ௛
ሺ௅ሻ
෍

ܧ߲

߲ܽ௞

߲ܽ௞

߲ܾ௛
ሺ௅ሻ

ൌ  ܾ௛
ሺ௅ሻሺ1 െ ܾ௛

ሺ௅ሻሻ෍ߜ௞ݓ௛௞

௄

௞ୀଵ

௄

௞ୀଵ

  ሺ12ሻ 

For the other hidden layers, we have: 

௛ߜ
ሺ௟ሻ
ൌ

ܧ߲

߲ܾ௛
ሺ௅ሻ

߲ܾ௛
ሺ௅ሻ

߲ܽ௛
ሺ௅ሻ

ൌ
߲ܾ௛

ሺ௅ሻ

߲ܽ௛
ሺ௅ሻ

෍
ܧ߲

߲ ௝ܽ
ሺ௟ାଵሻ

߲ ௝ܽ
ሺ௟ାଵሻ

߲ܾ௛
ሺ௅ሻ

ൌ   ܾ௛
ሺ௟ሻሺ1 െ ܾ௛

ሺ௟ሻሻ ෍ ௛௝ݓ௝ߜ

ுಽశభ

௝ୀଵ

ுಽశభ

௝ୀଵ

  ሺ13ሻ 

Once the deltas for all hidden neurons are calculated, by calculating the derivatives with respect to each of the 
weights, we arrive at: 
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ܧ߲

௜௝ݓ߲
ൌ

ܧ߲

߲ ௝ܽ
ሺ௟ሻ

߲ ௝ܽ
ሺ௟ሻ

௜௝ݓ߲
ൌ ௝ߜ

ሺ௟ሻ
ܾ௜
ሺ௟ିଵሻ

     ሺ14ሻ 

II. RECURRENT NEURAL NETWORK (RNN) 

Unlike the MLP, the recurrent neural networks (RNN) allow one or more of the neurons that form it to feed 
back (graphically, cycles can be seen); the above suggests that an RNN can, in principle send the "history" of 
inputs previous to each output. his analysis considers an RNN with a single self-connected hidden layer (see Fig. 
4). 

 
Fig. 4.Structure of an RNN [1] 

The key idea is that the recurring connections allow a "memory" of previous inputs that, remaining in the 
internal state of the neuron, decreases in the unit output. It is possible to apply, for the RNN learning, a similar 
method as used for MLP. The activation functions are maintained, but the modification that the system 
undergoes at that moment is related to that the activations arrive at the hidden layer from two places: the input 
layer and from the same hidden layer (Fig. 5). 

 
Fig. 5: Inputs and output of the hidden layer h-th neuron for a fixed time t. 

To mathematically analyze the RNN the notation shown in Table II shall be considered. 

TABLE 2.  Mathematical nomenclature of an RNN network 

 Input layer Hidden layer Output layer 

Number of units ܭ ܪ ܫ 

superscript ݅ h ݇ 

Input ݔ௜
௧ ܽ௛

ሺ௧ሻ ܽ௞
௧  

Output ݔ௜
௧ ܾ௛

ሺ௧ሻ ݕ௞
௧  

In addition, it should be noted that: the superscript t refers to time;ܾ௛
ሺ଴ሻ

ൌ 0;and the weights between neurons 
are denoted asݓ௜௝. 
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From the previous description we obtain: 

ܽ௛
௧ ൌ෍ݔ௜

௧ݓ௜

ூ

௜ୀଵ

൅෍ ௝ܾ
௧ିଵݓ௝௛

ு

௝ୀଵ

              ሺ15ሻ 

ܾ௛
௧ ൌ ሺܽ௛ߪ 

௧ ሻ             ሺ16ሻ 

ܽ௛
௧ ൌ ෍ܾ௛

௧ݓ௛௞

ு

௛ୀଵ

          ሺ17ሻ 

Taking the above as a basis, we will use an analogue of Backpropagation but for RNN, namely: 
Backpropagation Through Time - BPTT. As in Backpropagation, BPTT consists of repeatedly applying the 
chain rule although the most important thing is that for RNNs, loss function depends on the activation of the 
hidden layer. Therefore, for the h-th hidden neuron we have: 

௛ߜ
௧ ൌ

ܧ߲

߲ܾ௛
ሺ௧ሻ
ൌ  

ܧ߲

߲ܾ௛
ሺ௧ሻ

߲ܾ௛
ሺ௧ሻ

߲ܽ௛
ሺ௧ሻ

 

௛ߜ
௧ ൌ  

ܧ߲

߲ܽ௛
௧ ൌ

ܧ߲

߲ܾ௛
௧

߲ܾ௛
௧

߲ܽ௛
௧

߲ܾ௛
௧

߲ܽ௛
௧ ቌ෍

ܧ߲

߲ܽ௞
௧

௄

௞ୀଵ

߲ܽ௞
௧

߲ܾ௛
௧ ൅෍

ܧ߲

߲ ௝ܽ
௧ାଵ

߲ ௝ܽ
௧ାଵ

߲ܾ௛
௧

ு

௝ୀଵ

ቍ 

௛ߜ
௧ ൌ ܾ௛

௧ ሺ1 െ ܾ௛
௧ሻቌ෍ߜ௞

௧ݓ௛௞

௄

௞ୀଵ

൅෍ߜ௞
௧ାଵݓ௛௝

ு

௝ୀଵ

ቍ      ሺ18ሻ 

Keeping in mind that the same weights are used at each time interval, we must apply the sum on all the time 
considered to obtain the derivatives with respect to the network weights. Therefore: 

ܧ߲

௜௝ݓ߲
ൌ෍

ܧ߲

߲ ௝ܽ
௧

்

௧ୀଵ

߲ ௝ܽ
௧

௜௝ݓ߲
ൌ෍ߜ௝

௧ܾ௜
௧

்

௧ୀଵ

                                                   ሺ19ሻ 

In some cases it is advisable to "unwind" the feedback neuron in order to better understand what is happening 
(Fig. 6); in doing so we can see a frame-by-frame of the "states" of the neuron as time progresses. 

 

 
 

Fig. 6.Operation of a unit in an RNN [7] 
 

III. LONG SHORT-TERM MEMORY 
LSTM neural networks are a type of ANN whose structure consists of a set of memory blocks; basically are 

recurrently connected subnets (Fig. 7). Each block has one or more self-connected cells and three "gates" that, 
for the cells, will perform the functions of writing (input), reading (output), and reset. This type of ANN was 
designed to solve the problem of the descending gradient (loss of learning achieved since the first inputs are 
"forgotten"). 
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In addition, it should be noted that the connection weight between neurons i and j is denoted as ݓ_݆݅; H is the 
number of blocks in the hidden layer; h represents the output of the other blocks in the hidden layer; the symbol 
 .ݐ represents the state of cell ܿ at time ݐ ^ ܿ_ݏ

Calculations are presented for a single block which is assumed to be single cell. It will also be assumed that 
the output layer has K units. The procedure for calculating the Forward Pass and Backward Pass equations 
(BPTT) is shown below. 

Forward Pass Equations. For the three gates (input, output and forget) of the cell (Fig. 8) propagation 
functions a_ݐ ^ ߡ, a_߶ ^ ݐ and a_߱ ^ ݐ, not only consider the weighted sum of the current inputs but also the 
outputs, in the immediately preceding time of the blocks in the hidden layer, and of the states of the other cells 
of the same block in the immediately preceding time (except in the output gate because there is need of the 
current state of the cells). From a careful analysis of Fig. 8 we can see that the mathematical representation of 
the above description results in equations 20 to 25 [1]. 

ܽ௟
௧ ൌ෍ݓ௜௟

௧ ௜ݔ
௧

ூ

௜ୀଵ

൅෍ݓ௛௟
௧ ܾ௛

௧ିଵ

ு

௛ୀଵ

൅෍ݓ௖௟ݏ௖
௧ିଵ

஼

௖ୀଵ

               ሺ20ሻ 
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In the cells, two elements must be considered. The first is the propagation function ܽ_ܿ ^ ݐ, which depends 
not only on the current inputs, but on the outputs in the immediately preceding time of other blocks in the 
hidden layer. The second is the State of the neuron ܵ_ܿ ^ ݐ, which indicates if the neuron is retaining 
information or will forget it and depend on the output of the forget gate and the input gate. The cell output 
would indicate if the stored information is learned or retained. Based on the above premise we have: 
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௧ ݄ሺݏ௖
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Backward Pass Equations.Based on the fact that a variation of the Backpropagation (as mentioned above) will 
be used, the chain rule must be applied to calculate the partial derivatives. Initially assume the following 
definitions: 
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Defining E as the loss function (error), and starting from the fact that we wish to establish how the error 
varies when making changes in weights, we have from the chain rule the following: 
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Thus, the objective is to calculate this resulting first partial derivative, but in the case of LSTM, there are four 
types of "a" to be calculated, namely: 
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Taking into account that the summation is done on c, because the model is developed in a single block (which 
has ܥ cells inside), when calculating the respective derivatives we find the mathematical descriptions shown 
below: 
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Considering the above, we have the following Backward Pass equations: 

Output gate: 
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Cells: 
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Forget gate: 
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Input gate: 
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Note that the equations depend on the terms ߳_ܿ ^ ݐ,  therefore we should also study how the error is ,ݐ ^ ݏ_߳
affected by making changes both in the cell outputs as in their states. Keep in mind that error, in principle is a 
function whose variables are the ܭ outputs generated by the H blocks of the hidden layer. Moreover, for a fixed 
block, the resulting output (of a cell) at a time t will affect ܭ units of output layers at time t and the next input of 
each of the ܪ blocks in the hidden layer. Thus: 
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Ya que, 
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Now we will study what happens to the error if changes are made in the states of the cell. The state of cell ܿ 
at time ݐ ^ ܿ_ݏ ,ݐ reports whether or not the information was modified at that time. Therefore ݐ ^ ܿ_ݏ is a value 
that affects the input of all gates, the next state of the cell, and clearly, the output of the cell itself. Thus we get: 
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Since, 
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Comparison between MLP and LSTM. To conclude this discussion paper, in Table IV the most important 
characteristics between MLP and LSTM are compared; techniques that will be used to characterize PUs in 
cognitive radio networks to validate the convenience of using LSTM as a predictor of future states spectral 
channels use by primary users. 

TABLE IV.  Comparison between LSTM and MLP 

 MLP LSTM 

Type of ANN Feed forward RNN 

Feedback NO SI 

Type of Unit Neuron  Memory block 

Hidden Layers SI SI 

Connections Feedforward Feed forward in the same layer 

Learning Backpropagation BPTT 

IV. CONCLUSIONS 
 The article presents a mathematical analysis about the operation of type MPL, ANN, finally LSTM neural 

networks. 
 From the point of view of LSTM we show the mathematical modeling to obtain Backward Pass equations 

in LSTM networks; this analysis is very important to develop algorithms that lead to assess its application 
in fields as telecommunications in lines of research such as Cognitive Radio. 

 The analysis performed on LSTM to deduce the Backward Pass equations does not exist in the studied 
literature and there are no indications that they exist on the Internet, therefore it is a resource that is 
available to be used by the academic and scientific community. 
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