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Abstract—As the target performs random movements, the state variables are restricted to nonlinear 
model. In general, we observe non-Gaussian noise in target tracking application. So we can apply particle 
filtering algorithm to this system, however it has many drawbacks. In order to overcome these negative 
aspects, advanced techniques are implemented. Different algorithms like Markov Chain Monte Carlo 
particle filter (MCMC PF), Kullback-Lerbler Distance Sampling particle filter (KLD PF) are used in radar 
target tracking for analyzing in terms of signal to noise (SNR) ratio, Mean square error (MSE) and the 
standard error of mean (SEM). The simulation results are represented for MCMC particle filter and 
KLD Sampling. Therefore, we represent KLD Sampling particle filter is more optimized technique to the 
target tracking.  
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I. INTRODUCTION 

In engineering, nonlinearity is a frequent problem in the application of filters [1][2][3]. The dynamic 
stochastic process is estimated using noisy observations.  In this paper, these problems are overcome in the 
application of radar tracking where the parameters of the target are to be determined. The problems are 
described in Dynamic State Space model (DSS) of an unobserved state variable which provides time varying 
dynamics Xk. The probability distribution is p(Xk,Xk-1) where k is any physical quantity (time). The observations 
Yk in the application are combined version of noise and Xk. The distribution p(Yk / Xk ) represents the 
conditional probability of observation equation on the unknown state variable Xk. The model is represented as: 

Xk = f(Xk-1)+Uk     (State equation)       1.1 

Yk = h(Xk)+Vk    (Measurement equation)      1.2 

Where Uk, Vk are state and measurement noise. State estimation problems are resolved using particle filters in 
various applications of navigation and fault detection [5].  Particle filters can represent random probability 
densities which make them possible to overcome the problems of nonlinear and non-Gaussian estimation [4]. 
Even though particle filters are better for implementation, there are some limitations as it provides less diversity 
and computational complexity for more number of samples resulting in the divergence of particle filter [2]. 

  In present scenario a new algorithm has been introduced to overcome the less diversity and 
computational complexity problems.  The less diversity is overcome by MCMC sampling process whereas 
computational complexity is increased [11]. In the statistical approach with the modification in size of sample 
sets the efficiency gradually increased for particle filters. An adaptive approach like Kullback-Lerbler distance 
(KLD) sampling is proposed which provides significant improvement in the computational complexity [13]. The 
principle of KLD Sampling method is used to reduce the approximation error due to sample based 
representation. The total number of samples chosen is determined by the uncertainty in this approach. 

II. KLD ALGORITHM 

This approach limits the selection of Samples that are estimated from the particle filter providing error. The 
discrete constant distribution form is used in assumed as true posterior. Here the samples distance between 
maximum likelihood estimate (MLE) and true posterior [13] is determined. 

Let us consider n samples from a discrete distribution having k distinct bins. 

Let S represents the samples taken from each set. S=(S1, S2…Sk). 

Let S is distributed as S=~Multinomial (n, p). Where the probability of each set is p=p1, p2… pk. The MLE 
(maximum likelihood estimate) of this probability is specified as ࢖ෝ=n-1S. The likelihood statistic ratio λn for 
testing the probability is 

log λn=∑ log (
ෝ݆݌
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This gives the minimum distance, referred as K‐L distance, between the MLE and the true distribution. 

P (K≤ϵ) = P (2nK≤2nϵ) = P (χ2k‐1≤2nϵ)              2.2 

This expression  is valid when p, the true distribution,  is the  likelihood ratio come together to a chi‐square 
distribution. Combining this with the quantities of Chi‐square distribution, 

P (K≤ϵ) =1‐δ                    2.5 

By choosing the samples appropriate, as  

    ݊ ൌ
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ଶ                 .2.6 

 With  a probability of 1‐δ,  the KL distance between MLE  and  true distribution  is obtained  less  than  ϵ. A 
better selection of n can be done by Wilson‐Hilferty transformation as 

݊௫ ൌ
௦ିଵ

ଶ∈
൜1 െ

ଶ

ଽሺ௦ିଵሻ
൅ ට

ଶ

ଽሺ௦ିଵሻ
ଵିఋൠݖ

ଷ

       2.7 

 Hence the resulting approach is KLD‐sampling algorithm since it is related to Kullback‐Lerbler distance.  

1. The Probability Mass Function of the preliminary state p(x0) is known.  
2. Generate N initial particles (x0,i

+) on the basis of the pdf p(x0). (i=0,1,….N) 
3. For k=1,2,… do 
4. Do time propagation step to get prior particles (xk,i). 

xk,i
-   =  f(xk-1,i

+)+uk      (i=1 ,2,…N) 
5. Compute the weights (wi) of each particle (xk,i

-). 
6. Normalize the weights as 

wi     =   wi /sum (wj)   (j=1,2….N) 

//KLD sampling algorithm\\ 

7. Initialization : s=0, i=0, N=1, all bins are zero resampled 
8. While(i≤N and i≤Nmax) do 

Using multinomial resampling we will select one particle as per the weights from particle set: i=i+1. 
9. If (xk

(n) falls into an zero resampled bin b) then 
10. s=s+1; 
11. b=non-zero resampled; 
12. if (n≥nxmin) then 
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14. n=n+1 
15. Return xk  

III. MCMC ALGORITHM 

Particle filters are popular in solving nonlinear and non-Gaussian state estimation problems. There is a 
drawback in particle filter which provide less diversity which overcome using MCMC PF [11]. Here MCMC 
particle filtering is used to swap the standard sampling to increase the diversity and allows to handle better 
dimensional state spaces, which standard PF cannot provide. 

The steps for MCMC algorithm are as follows: 

1. The Probability Mass Function of the preliminary state p(x0) is known. 
2.  Generate N initial particles (x0,i

+) on the basis of the pdf p(x0). (i=0,1,….N) 
3. For k=1,2,… do 
4. Do time propagation step to get prior particles (xk,i). 

xk,i
-   =  f(xk-1,i

+)+uk      (i=1,2,…N) 
5. Compute the weights (wi) of each particle (xk,i

-). 
6. Normalize the weights as 

wi     =   wi /sum (wj)   (j=1,2….N) 
 //MCMC sampling algorithm\\ 

7. Sample u~U [0, 1]. 
8. Get the new particles xk,i

* from p(xk/ xk-1,i). 
9. If u < min{1, p(yk/ xk,i

*) / p(yk/ xk,i
-)} 

xk,i = xk,i
* 

else  xk,i = xk,i
-  

10. Return  xk 
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IV. SIMULATION RESULTS 

The simulation code in Matlab was used for analysis of the performance of two algorithms, in Pentium pro 
with 2.0GHz and 2GB RAM. For the comparison of the performance of the two methods in target tracking as 
discussed above, the system was simulated using dynamic state space model. Thereafter, the simulation of the 
Monte Carlo Markov chain PF, the KLD sampling particle filter has been done. The analytical comparison was 
performed for the simulation results obtained. 

 

Fig 1: SNR vs BER for radar tracking 

Figure 1 shows the SNR to BER relation for the two algorithms considering N = 300. From the figure, it is 
clearly observed that each algorithm has better tracking performance but MCMC particle filter outperforms 
KLD particle filter.   

Figure 2 provides the comparison between the mean square error for the KLD and MCMC particle filter. 
From the graph, it is observed that the value of MSE for KLD and MCMC are very low and almost same. Thus 
we can say that these algorithms can provide better Convergence consistency and uniform MSE distribution 
resulting in good estimation for nonlinear and non-Gaussian state estimation problem. 

 

 
 

Fig 2: MSE Curve for radar Tracking 
 

Table 1:  MSE for MCMC PF, KLD PF 
 

 
 
 
 
 
 

 
MSE 

Run time (s) 
Mean Variance Standard deviation SEM 

MCMC PF 0.3984 0.2929 0.5412 0.1105 1.931 s 

KLD sampling PF 0.3657 0.2722 0.5217 0.1065 0.849 s 
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From table 1 and figure 2, constructing density function and optimizing the proposed distribution for gradual 
increase in diversity of particles through MCMC algorithm which takes the state estimates as a reference of 
updated measurement which represents state estimation more precise and efficient. As we can see standard error 
of mean (SEM) is low for KLD particle filter than MCMC particle filter. It makes the state estimation more 
accurate and effective. The more effective samples, the higher will be the estimation accuracy.  

 The execution time performance of the MCMC algorithm is obtained to be 1.9s where as for the KLD 
algorithm is 0.84s. Hence the computational complexity is reduced using the KLD algorithm. It means the 
estimation accuracy is obtained with only 50% of the computational time of MCMC PF. In contrast MCMC 
algorithm is better in diversity problem but KLD PF is competitor with MCMC PF. In computational 
complexity KLD algorithm dominates MCMC PF. So, finally tracking accuracy is improved by KLD PF. 

V. CONCLUSION 

The proposed work in this manuscript is having a lot of potential for future scope in the area of radar target 
tracking system ensuring that the work is versatile and flexible. The research of  tracking can be extended using 
different new techniques in the analysis of mean square error (MSE). Adaptive algorithms are suited for target 
tracking in estimation for nonlinear states. Finally we conclude that KLD sampling particle filter provides better 
performance in target tracking even it has less diversity than MCMC particle filter. 
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