
Formal Modeling and Verification of Time-
Constrained ARQ Protocols with Event-B 

Rajaa Filali#1, Mohamed Bouhdadi#2 

# LMPHE Laboratory University of Mohammed V, Faculty of sciences 
4 Street Ibn Batouta, PB 1014 RP, Rabat, MOROCCO 

1 rajaafilali@gmail.com 
2 bouhdadi@fsr.ac.ma 

Abstract—Automatic Repeat Request (ARQ) is a control error mechanism based on the retransmissions 
of lost packet. This mechanism is adequate for an important number of communication protocols where 
reliability is of prime importance. Formal methods are indispensable for the development of these 
protocols in order to ensure their correctness. In this paper, we study the practical aspects of applying 
Event-B and UPPAAL for modeling and verification of time-constrained ARQ protocols. We start by 
introducing a pattern for the retransmission time-out within Event-B and transform this pattern to 
pattern in UPPAAL. We have used UPPAAL to augmenting Event-B modeling with real-time 
verification, since the modeling of timing properties is not directly supported in Event-B. At last, we 
illustrate our approach with a case study based on the stop-and-wait protocol. 
Keywords - Event-B, UPPAAL, Verification, Time-constraints, Formal modeling, ARQ protocols. 

I. INTRODUCTION 

Automatic-repeat-request (ARQ) protocols [1] are widely used in modern data communications to guarantee 
reliable transmission between a sender and a receiver over unreliable communication channels. ARQ uses the 
principle of retransmission upon timeout to recover data considered as lost or damaged. Several formal methods 
have been applied to ensure the correctness of these protocols, such as Petri Nets [2] and theorem proving [3]. 
As a formal methods based on the first order classical logic and set theory, Event-B [4] [5] has the advantages in 
mechanized proving and the possibility to model a system in several levels of abstraction through refinement [6]. 

In this paper we present an approach to modeling and verification of time-constrained ARQ protocols. This 
approach consists in exploiting the pattern for modeling of retransmission time-out within Event-B and 
transforms this pattern to pattern in UPPAAL in order to augmenting Event-B models with time. While Event-B 
offers a scalable approach to ensuring functional correctness of a system, it is not efficient for verification of 
timing constraint (non functional properties). UPPAAL [7], on the other hand, is a model checker which has a 
good support for timing. The use of Event-B with UPPAAL can guarantee both functional and nonfunctional 
(timed) [8] properties. 

We have used the Rodin platform [9] [10], which provides an environment for development, analysis and 
verification of Event-B models. The ProB [11] was very useful in animating all models and in verifying the 
absence of error (no counter-examples exist) and deadlock. The model checking tool UPPAAL is called upon to 
verify the timed automata [12] representing the model. 

We illustrate our approach by formal development and verification of the stop-and-wait ARQ protocol [13] 
which is a basic Automatic Repeat Request (ARQ) protocol that ensures reliable data transfers across noisy 
channels. 

The structure of the paper is as follows. Section 2 gives a short introduction to Event-B, the Rodin platform 
and UPPAAL. The retransmission time-out pattern is presented in Section 3. Section 4 gives a case study to 
illustrate the motivation for our approach.  Finally, a conclusion is presented to summarize the main outcomes of 
this research. 

II. OVERVIEW OF EVENT-B METHOD AND UPPAAL 

A. Event-B and Rodin tool 
Event-B is a modeling method used to formalize and develop transition systems. It is an evolution of the 

(classical) B-method [14]. Event-B is centered on the notion of events (transitions). It is based on first-order 
logic [15] and a typed set-theory [16]. The models described with Event-B are built by means of two basic 
constructs: contexts and machines. Contexts contain the static parts of a model whereas machines contain its 
dynamic parts. Machines and contexts can be inter-related: a machine can be refined by another one, a context 
can be extended by another one and a machine can see one or several contexts as shown in Fig.1. 

Contexts specify the static part of a model. They may contain carrier sets (similar to types), constants, axioms 
(containing carrier sets and constants), and theorems (expressing properties derivable from axioms). -Machines 
specify behavioral properties of the models. They may contain variables defining the state of a machine, 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1807



invariants constraining that state, and events (describing possible state changes). Each event is composed of a 
set of guards and a set of actions. Guard state the necessary conditions under which an event may occur, and 
actions describe how the state variables evolve when the event occurs. Contexts/Machines may be refined from 
more abstract to more concrete contexts/machines. A key concept in Event-B is proof-obligation (PO) [17] 
capturing the necessity to prove some internal property of the model such as typing, invariant preservation by 
events, and correct refinements. Strong tool support is provided in order to support this proof process. 

Event-B is not specific to embedded systems design but it is currently being investigated by several industrial 
from different sectors (automotive, transportation, space) in the context of the DEPLOY project . In Event-B, an 
event is defined by the syntax: EVENT e WHEN G THEN S END , Where G is the guard, expressed as a first-
order logical formula in the state variables, and S is any number of generalized substitutions, defined by the 
syntax S ::= x := E(v) | x := z : | P(z). The deterministic substitution, x := E(v), assigns to variable x the value of 
expression E(v), defined over set of state variables v. In a non-deterministic substitution, x := z : | P(z), it is 
possible to choose non deterministically local variables, z, that will render the predicate P(z) true. If this is the 
case, then the substitution, x := z, can be applied, otherwise nothing happens. It is also important to indicate that 
the most important feature provided by Event-B is its ability to stepwise refine specifications. Refinement is a 
process that transforms an abstract and non-deterministic specification into a concrete and deterministic system 
that preserves the functionality of the original specification. During the refinement, event descriptions are 
rewritten to take new variables into account. This is performed by strengthening their guards and adding 
substitutions on the new variables. New events that only assign the new variables may also be introduced. Proof 
obligations (POs) are generated to ensure the correctness of the refinement with respect to the abstract model. 
Event-B is supported by several tools, currently in the form a platform called Rodin. Rodin is an open-source 
development platform for Event-B. It provides an environment for system modeling and analyses, including 
support for refinement, i.e. POs are generated automatically between abstraction levels, and support for 
mathematical proof, i.e. most POs can be discharged automatically or manually. 

 
Fig.1. Machine and Context relationship 

B. UPPAAL 
UPPAAL is a model checker that allows definition of the system behavior by means of a network of timed 

automata. A timed automaton is a finite state machine extended with clock variables, which are used to measure 
time progress. The theory of timed automata allows clocks to be evaluated to a real number, but UPPAAL 
restricts those evaluations to integer numbers. An UPPAAL timed automaton is made up of a number of 
locations and a number of transitions (also known as edges) between them. A transition usually causes an update 
of the system's variables. In particular, as a consequence of a transition, integer and boolean variables can be 
assigned a new value, whereas clock variables can only be restarted. Synchronous actions (i.e. actions that are 
simultaneously performed by several automata) can be modeled by means of synchronous channels. Such 
transitions lead to a new state of the system in which the involved automata may all have stepped into a new 
location. A transition (either synchronous or not) is enabled as long as its corresponding guard condition holds. 
Guard conditions can use integer, boolean and clock variables, yet with some restrictions. There is a particular 
kind of locations, the so-called committed locations, which help to model atomic actions. These locations are 
always left immediately and can interleave only with other commited locations. Additionally, UPPAAL 
incorporates three mechanisms to model urgency, namely invariants, urgent channels and urgent locations, 
making it possible to force certain transitions to be fired as soon as they are enabled. Whenever these 
mechanisms are not used, a transition may take place at an undetermined instant. A fundamental characteristic 
of a network of timed automata is that clocks progress at the same rate. Nevertheless, in this work some 
techniques have been developed which allow us to model clocks of different rates as well.  

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1808



A system in UPPAAL is modeled as a network of timed automata. A subset of CTL (computation tree logic) 
[18] is the basis for the query language in UPPAAL. The following three kinds of properties can be checked 
with UPPAAL. 

• Reachability i.e. some condition can possibly be satisfied. 
•  Safety i.e. some condition will never occur. 
•  Liveliness i.e. some condition will eventually become true. 

III.    RETRANSMISSION TIME-OUT PATTERN 
In this section, we will introduce the pattern of the retransmission over time-out which is modeled firstly in 

Event-B and then transferred to UPPAAL in order to augmenting event-B models with time. 
A. Modeling retransmission time-out in Event-B 

In the abstract model, the event Send sets the Boolean variable S as one of its actions, so when variable S has 
the value of TRUE, it shows event Send has happened. Also, in event Confirm the flag of event Send will be 
checked to see if event Send has already happened, and the variable C will be set to TRUE. SendGrds and 
ConfirmGrds represent the other possible guards of the event and in the action section. SendActs and 
ConfirmActs represent the other possible actions of the event. 

 
 
 
 
 
 
 
 
 
 
 

     In the refinement, two variables t and rcr are declared to represent the current time and the retransmission 
counter in the machine.  
If the event Confirm has not happened when the retransmission timer expires, the event Resend will happen, the 
retransmission counter (rcr) is incremented by one and the retransmission timer restarted. For the events Send 
and confirm, the refinement is just a superposition, time constraints are added without changing the existing 
expressions. If the transmission is successful, the propagation time should be shorter than time. The event tick-
tock is added to model the progress of time. 

 
      
 
 
 
 
 
 
 
 
 

 
 

B. Verification of retransmission time-out with UPPAAL 
At first, Event-B model is transformed to UPPAAL model as shown in Figure 2. Event-B events are mapped 

into UPPAAL transitions and abstract clock, event-B guards are mapped into UPPAAL invariants and guards, 
the invariants and axioms in event-B are modeled to declarations in UPPAAL, and the event-b states are 
mapped to locations in UPPAAL. 

EVENT Confirm 
 WHERE 
 S = TRUE 
 C = FALSE 
 ConfirmGrds 
 THEN 
 C:=TRUE 
 ConfirmActs 
 END

EVENT  Send 
 WHERE 
 S = FALSE 
 SendGrds 
 THEN 
 S := TRUE 
 SendActs 
 END 

EVENT Send 
 WHERE 
 S = FALSE 
 SendGrds 
 THEN 
 S := TRUE 
 rcr:=1 
 SendActs 
END 

EVENT Confirm 
WHERE 
S = TRUE 
C = FALSE 
t<=time 
ConfirmGrds 
THEN 
C:=TRUE 
t:=0 
ConfirmActs 
END 

EVENT Tick-Tock   
THEN 
t:=t+1 
END 

EVENT Resend 
 WHERE 
 S = TRUE 
 t=time 
 rcr<RCR_MAX 
 reSendGrds 
THEN 
t:=0 
rcr:=rcr+1  
reSendActs 
END 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1809



Fig. 2. Event-B to UPPAAL transformation 

By applying this mapping on our event-B model, we get the UPPAAL model of retransmission time-out, as is 
shown in Fig. 3.  

 
Fig. 3.  UPPAAL model of retransmission time-out 

The pattern model in UPPAAL is verified using some properties. We discuss each of the properties with the 
UPPAAL query language representation. 

retransmission.S2 --> retransmission.S3 imply t<=time:  if the state S2 of the automaton retransmission is 
reached, it will result in reaching the state S3 just when t<=time. 

A<> t>time imply not retransmission.S2: for any t>time, the state S2 cannot be reached. 
E[] retransmission.S2 imply  ! retransmission.S3: the automaton retransmission may be still in the state S2 

until the state S3 will be activated. 
IV. CASE STUDY 

In this section, we will use Event-B to model the real-time properties of Stop-and-wait Protocol and then 
applied our approach to verify its correctness. 
A.  Informal specification of stop-and-wait protocol 

A Stop-and-Wait Protocol can be considered to be any data transfer protocol in which the sending entity stops 
after transmitting a message and waits until it receives an acknowledgement indicating that the receiver is ready 
to receive the next message. 

The stop-and-wait is a basic Automatic Repeat Request (ARQ) protocol that ensures reliable data transfers 
across noisy channels and combine flow control with error recovery using a timeout and retransmission. When a 
message is sent, a timer is started, which will expire after some finite timeout period. 

We consider that the sender and receiver entities can each be in one of two states. For the sender, this is one 
state in which the sender is ready to send a new message, and another in which the sender is waiting for an 
acknowledgement of the currently outstanding message. For the receiver, this is one state in which it is ready to 
receive a message, and another in which it is processing a message and generating the appropriate 
acknowledgement with which to reply. Both the sender and receiver will alternate between their two respective 
states as protocol execution proceeds. 

Both the sender and the receiver maintain a sequence number. In the case of the sender, this sequence number 
(the sender sequence number) records the sequence number of the message to send next, or if a message is 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1810



currently outstanding, the sequence number of the message that is currently outstanding. In the case of the 
receiver, this sequence number (the receiver sequence number) records the sequence number of the next 
message expected by the receiver. 
B. Formal modeling of SAW protocol in Event-B 

We have made our model by several refinements, but we will just present the final model because of lack of 
space. 

Sets, constants and axioms: We first introduce the basic sets we will use in our model: a set “Messages” of 
possible messages among the sender, a set “ACK” of acknowledgment which can be sent by the receiver and the 
two sets “state_send” and “state_rec” which represent the possible states of the sender and the receiver, 
respectively.  

We define also the two constants that we assigned default values: the constant “time” represents the timeout 
period and the constant “RCR_MAX” which represents the maximum number of retransmission. 
SETS 

Messages 
ACK 
state_send 
state_rec 
CONSTANTS 

time 
RCR_MAX 
s_ready 
wait_ack 
r_ready 
processing 
AXIOMS 

Axm1   :    partition(state_send, {s_ready}, {wait_ack}) 
Axm2   :    partition(state_rec, {r_ready}, {processing}) 
Variables and invariants:  In order to manipulate states we introduce two new variables:  

st_snd: denotes the current state of sender. 
st_rcv: denotes the current state of receiver. 
Then the variables Packet_msg_snd, Packet_msg_rcv, Packet_ack_snd, and Packet_ack_rcv are introduced to 

define respectively, the set of messages sent by the sender, the messages received successfully by the receiver, 
the set of acknowledges sent by the receiver and successfully received acknowledges by the sender. 

The variables t and rcr denote the current time and the number of retransmission respectively. 
sn and rn represent respectively the current sender sequence number and the current receiver sequence 

number. 
oldSn and oldRn represent respectively the old sender sequence number and the old receiver sequence 

number. 
VARIABLES 
st_snd 
st_rcv 
t 
rcr 
sn 
rn 
r 
oldSn 
oldRn 
Packet_msg_snd 
Packet_msg_rcv 
Packet_ack_snd 
Packet_ack_rcv 
 

INVARIANTS 
inv1   :    st_snd ∈ state_send 
inv2   :    st_rcv ∈ state_rec 
inv3   :    t ∈ ℕ  
inv4   :    rcr ∈ ℕ  
inv5   :    sn ∈ ℕ  
inv6   :    rn ∈ ℕ  
inv7   :    Packet_msg_rcv ∈ ℙ(Messages×ℕ) 
inv8   :    Packet_msg_snd ∈ ℙ(Messages×ℕ) 
inv9   :    Packet_ack_snd ∈ ℙ(ACK×ℕ) 
inv10   :  Packet_ack_rcv ∈ ℙ(ACK×ℕ) 
inv11   :  r ∈ BOOL 
inv12   :  oldSn ∈ ℕ  
inv13   :  oldRn ∈ ℕ 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1811



Events:  Events of the model are enumerated as follows:  
S_send_req :  the sender moves from ‘s_ready’ to ‘wait_ack’ state and sends the message with the sender 
sequence number sn. 
R_receive_req :  the receiver receives the message sent by the sender and moves to processing state. The 
receiver increments his sequence number by one. 
R_send_ack : after receiving the request, the receiver sends an acknowledgment to the sender..  
S_receive_ack : represents the acknowledgment received successfully by the sender. 
Re_send_req :  When timer t fires, the sender must retransmit the request and must reset the timer with a value 0 
and increments the retransmission counter rcr by one. 
receive_old_req:  when the receiver receives an old message, it remains in r_ready state. 
re_send_ack : represents the resending acknowledgment from the receiver to the sender. 
receive_old_ack : represents the duplicate acknowledgment received by the sender. 
tick_tock : represents the time progressing event.  
S_send_req   ≙    

ANY 

msg 
WHERE 

grd1   :    st_snd=s_ready 
grd2   :    t=0 
grd3   :    (msg↦sn) ∉ Packet_msg_snd 
THEN 

act1   :    st_snd≔wait_ack 
act2   :    rcr≔1 
act3   :  Packet_msg_snd≔Packet_msg_snd ∪ {msg↦sn} 
END 

R_receive_req   ≙    

ANY 

msg 
WHERE 

grd1   :    st_rcv=r_ready 
grd2   :    sn=rn 
grd3   :    (msg↦sn) ∈ Packet_msg_snd 
THEN 

act1   :    st_rcv≔processing 
act2   :    rn≔rn+1 
act3   :   Packet_msg_rcv≔Packet_msg_rcv ∪ {msg↦sn} 
act4   :  Packet_msg_snd≔Packet_msg_snd ∖ {msg↦sn} 
END 

R_send_ack   ≙    

ANY 

msg 
ack 
WHERE 

grd1   :    st_rcv=processing 
grd2   :    (msg↦sn) ∈ Packet_msg_rcv  
grd3   :    ack ∈ ACK 
THEN 

act1   :    st_rcv≔r_ready 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1812



act2   :    Packet_ack_snd≔Packet_ack_snd ∪ {ack↦rn} 
END 

S_receive_ack   ≙    

ANY 

ack 
WHERE 

grd1   :    st_snd=wait_ack 
grd2   :    t≤time 
grd3   :    rn > sn 
grd4   :    (ack↦rn) ∈ Packet_ack_snd 
THEN 

act1   :    st_snd≔s_ready 
act2   :    t≔0 
act3   :    sn≔rn 
act4   :    Packet_ack_rcv≔Packet_ack_rcv ∪ {ack↦rn} 
act5   :    Packet_ack_snd≔Packet_ack_snd ∖ {ack↦rn} 
END 

Re_send_req   ≙    

ANY 

msg 
WHERE 

grd1   :    st_snd=wait_ack 
grd2   :    t=time 
grd3   :    rcr<RCR_MAX 
grd4   :    msg ∈ Messages 
THEN 

act1   :    st_snd≔wait_ack 
act2   :    rcr≔rcr+1 
act3   :    t≔0 
act4   : Packet_msg_snd≔Packet_msg_snd∪{msg↦sn} 
act5   :    oldSn≔sn 
act6   :    oldRn≔rn 
END 

receive_old_req   ≙    

ANY 

msg 
WHERE 

grd1   :    sn≠rn 
grd2   :    st_rcv=r_ready 
grd3   :    (msg↦sn) ∈ Packet_msg_rcv 
grd4   :    (msg↦sn) ∈ Packet_msg_snd 
THEN 

act1   :    st_rcv≔r_ready 
act2   :  Packet_msg_snd≔Packet_msg_snd ∖ {msg↦sn} 
act3   :    flag_old≔TRUE 
END 

re_send_ack   ≙    

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1813



WHEN 

grd1   :    st_rcv=r_ready 
grd2   :    r=TRUE 
THEN 

act1   :    st_rcv≔r_ready 
act2   :    r≔FALSE 
END 

receive_old_ack   ≙    

ANY 

ack 
WHERE 

grd1   :    st_snd=wait_ack 
grd2   :    (ack↦oldRn) ∈ Packet_ack_rcv 
grd3   :    oldSn <sn 
grd4  :      oldSn<oldRn 
THEN 

act1   :    st_snd≔wait_ack 
act2   :    oldSn ≔ oldSn+1 
END 

tick_tock   ≙    

BEGIN 

act1   :    t≔t+1 
END 

Proofs: The Proof Obligation Generator of the Rodin Platform produces 28 proof obligations, with 9 of them 
proved interactively. 

The synchronization between events is verified by using ProB plugin. 
C. Verification of SAW properties with UPPAAL 

We transfer our Event-B model to UPPAAL model by applying the mapping described above. The transferred 
UPPAAL model is composed of 4 automatons, as shown in Fig.4, Fig.5 and Fig.6. 

Fig.4 represents the sender automaton: Going from state s_ready to wait_ack , the message is transmitted with 
the corresponding information and rcr is reset. In state wait_ack there are three possibilities: in case the 
maximum number of transmissions has not been reached and the timer t expires, the sender retransmits the 
message and remains in this state. If the ack is received within time (t<time), the sender moves to the initial state 
s_ready. When the sender receives duplicate acknowledgment, it remains in wait_ack state. 

In state r_ready, the receiver (see fig.5) is waiting for the first message to arrive, once received, the variable 
rn is incremented by one and the receiver enters the state processing, then it sends the ack to the sender and 
moves to r_ready state. when the receiver receives an old message, it remains in r_ready state. 

These automatons communicate between them via synchronization channels: 
chan  send_req, rec_req, send_ack,  rec_ack; 
send_req!  means sending a message in the channel send_req. 
send_req? means waiting for a message from the channel send_req. 
The variable t is used in UPPAAL as a clock to model the timer. 
After using the simulator to ensure that the model behaves as the system we wanted to model (and sometimes 

also to detect some errors in the original design), the next phase is to check that the model verifies the 
properties. These properties are written as logic CTL formulas: 

A<> t>time imply not Sender.wait_ack: for any t>time, the state wait_ack cannot be reached. 
E[] Sender.wait_ack imply  ! Sender.s_ready : the sender may be still in the state wait_ack until the state 

s_ready will be activated. 
 E[] Receiver.processing imply Sender.wait_ack: when the receiver is in processing state, the sender state 

wait_ack is already reached. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1814



 
Fig.  4. The Sender in UPPAAL 

 
Fig.  5. The Receiver in UPPAAL 

   
Fig. 6. The two Channels in UPPAAL 

V. CONCLUSION 

In this paper we proposed an approach to modeling and verification of time-constrained ARQ protocols. The 
main principle of these protocols is the retransmissions of lost packets upon time-out. We used Event-B formal 
method with its Rodin tool and the model checker UPPAAL. This approach consists in exploiting the pattern for 
modeling of retransmission time-out within Event-B and transform this pattern to pattern in UPPAAL to verify 
the time constraints properties. For this purpose, a formal link between the semantics of Event-b model and 
UPPAAL was established. 

We applied our approach on the stop-and-wait ARQ protocol which is a basic Automatic Repeat Request 
protocol and we have refined our Event-b model to add more specifications and we have also verified the model 
with ProB to ensuring the synchronization between events, after that we mapped the model into UPPAAL to 
verify the time constraints of this protocol. 

REFERENCES 
[1] N. Hoang Anh, L.  Hanzo, “Hybrid automatic-repeat-reQuest systems for cooperative wireless communications”. Communications 

Surveys & Tutorials, IEEE 16.1, pp. 25-45, 2014. 
[2] B. Eike, R. Devillers, M. Koutny, Petri net algebra. Springer Science & Business Media, 2013. 
[3] C, Chin-Liang, R Char-Tung Lee, Symbolic logic and mechanical theorem proving. Academic press, 2014. 
[4] J.R. Abrial, Modeling in Event-B: system and software engineering, Cambridge University Press, 2010. 
[5] D. Cansell, D. Mery, “The event-B Modelling Method: Concepts and Case Studies”, Springer, Heidelberg, pp. 33-140, 2007. 
[6] R.J. Back, On the correctness of refinement steps in program development, Department of Computer Science, University of Helsinki, 

1978.  
[7] B. Gerd, A. David, K.G. Larsen, “A tutorial on uppaal .Formal methods for the design of real-time systems”. Springer Berlin 

Heidelberg, pp. 200-236, 2004. 
[8] C. Lawrence, et al., Non-functional requirements in software engineering. Vol. 5. Springer Science & Business Media, 2012. 
[9] J.R. Abrial,  J.B. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: “an open toolset for modelling and reasoning in 

Event-B”. , Vol 12, No.6, pp.447-466, 2010.  
[10] C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna, RODIN (rigorous open development environment for complex systems) 

University of Newcastle upon Tyne, Computing Science, 2005. 
[11] O. Ligot, J. Bendisposto M. Leuschel, “Debugging event-b models using the prob disprover plug-in”. Proceedings AFADL, 7, 2007. 
[12] B, Johan, W. Yi. Timed automata: “Semantics, algorithms and tools”. Lectures on concurrency and petri nets. Springer Berlin 

Heidelberg, pp. 87-124, 2004. 
[13] G. E. Gallasch, Parametric verification of the class of stop-and-wait protocols (Doctoral dissertation, University of South Australia). 

2007. 
[14] Abrial, J.R., The B-book: assigning programs to meanings. Cambridge University Press, 2005. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1815



[15] F. Melvin, First-order logic and automated theorem proving. Springer Science & Business Media, 2012. 
[16] J. Thomas, Set theory. Springer Science & Business Media, 2013. 
[17] S. Hallerstede, “On the purpose of Event-B proof obligations, In Abstract state machines”, B and Z, Springer Berlin Heidelberg, pp. 

125-138, 2008. 
[18] M. Reynolds, “An axiomatization of full computation tree logic”. The Journal of Symbolic Logic 66.03, pp.1011-1057, 2011 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Rajaa Filali et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i4/160804101 Vol 8 No 4 Aug-Sep 2016 1816




