
Vulnerable Node Detection and Route 
Recovery in Dynamic Complex Networks 

with the Ant Colony Optimization 
ReisaDewi1, Tae-Hyong Kim2 

Computer Eng. Department, Kumoh National Institute of Technology 
61 Daehak-ro, Gumi, Gyeongbuk39177 Republic of Korea 

1 reisadewi@gmail.com 
2taehyong@kumoh.ac.kr (corresponding author) 

Abstract—Vulnerability is an important issue that needs to be solved in order to optimize the 
performance of complex networks. Dynamism in the topology of a complex network isan important factor 
in vulnerability analysis of complex networks.We analyses the vulnerability of dynamic complex 
networks and deals with vulnerable nodes in such networks by focusing on ad-hoc networks, which are 
typical dynamic networkssharing the properties of complex networks.This paper represents a node-type 
model with respect to network vulnerability as a semi-Markov process, and definesthe vulnerability index 
of ad-hoc networks by throughput measurement and graphical analysis. We propose an algorithm based 
on the ant colony optimization (ACO) in order to detect vulnerable nodesand to reconstruct a new robust 
routefor ad-hoc networks. The simulation results show that the proposed algorithm lowers the 
vulnerability index andreduces vulnerable nodes with maintainingthe throughput of the network. 
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I. INTRODUCTION 

Vulnerability is an important issue to address the problem in optimization and robustness of complex 
networks. There are many researches related to vulnerability, such as vulnerability management [1], network 
vulnerability identification[2], and detecting and repairing node vulnerability [3]. Vulnerability factors of 
complex networks are divided into internal factors (e.g. network element, network topology and network policy) 
and external factors (e.g. infrastructure condition). Some researchers focus on structural robustness of the 
network properties e.g., degree distribution [4], betweeness [5] and link removal [6]. Those researches show that 
the more heterogeneous the networks are, the more robust theyare to random failures[7]. However, the networks 
become more vulnerable if they have highly connected or important nodes, (e.g. scale free networks). 
Furthermore, the researches regarding relations between network properties and vulnerability are insufficient to 
maintain robustness of the networks, since real networks evolve dynamically. 

An ad-hoc network is an example of complex networks. Ad-hoc networkshave been prominent issuesin 
computer networks in the past few years due to the advancement of network technology and increased demands 
of high connectivity. Ad-hoc networks continue to grow into large scale networks, whether theyare fixed 
networks or mobile networks. The self-configuration or decentralize infrastructure is one of the advantages of 
ad-hoc network to improve flexibility and robustness of the networks. Information exchange in ad-hoc networks 
can be done without a server node. Additionally, each node can be a host as well as a router simultaneously [6]. 
Despite of ease and fast deployment of ad-hoc networks, they did not reduce the complexity of networks. 
Furthermore, there are some challenges in ad-hoc networks that need to be considered such as dynamic topology 
where users join and leave frequently, whichcauses rapid change of network routing, limited resources 
(bandwidth and power), and security problem. Due to these challenges in ad-hoc networks, vulnerability 
analysis become important in order to maintain the network's performance. 

In general, there are three main components in vulnerability of complex networks, resistance (robustness), 
resilience and adaptive capacity [7]. The resistance is the ability to resist random changes in its system 
environment, resilience is the ability to recover to its structural property after the occurrence of a perturbation, 
while adaptive capacity is the system ability to adapt or maintain the function and property. The vulnerability in 
ad-hoc networks caused by its dynamic topology was attracting the attention of some researchers [6]. With 
limited resources, highly mobile nodes, and security threats make challengingthe vulnerability analysis in ad-
hoc networks. To overcome this problem, some researchers identified the vulnerable nodes in the network using 
several different algorithms, e.g. multiple-objective optimization, game theory [8], and genetic algorithm. These 
algorithms are able to find the best solution in relatively short time, for both local and global solution. 

This paper proposes an algorithm based on the ant colony optimization (ACO)to detect vulnerable nodes and 
to recover communication in a network efficiently [9] which finds the optimum local solution to lead the global 
solution. The ACO is a meta-heuristic algorithm and it is inspired by the foraging behaviour of real ants. Ants 

e-ISSN : 0975-4024 ReisaDewi et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1302



are known for their ability to find the shortest path to their destination and their adaptability to dynamic 
topology. If ants meet an obstacle in their path, they look for a new path in relatively short time without the need 
to go back to their nest. This ability to adapt in ants is necessary to respond any vulnerability in the network. 

The rest of this paper is organized as follows. Section 2 introduces definitions and preliminaries of 
vulnerability in complex networks. Section 3 describes modelling and analysis of vulnerability issues. Section 4 
and 5 present the proposed algorithm and its evaluation respectively. Finally, section 6 presents the conclusion 
and direction for future work. 

II. PRELIMINARIES AND RELATED WORK 

This section presents preliminaries of the vulnerability analysis of complex networks andad-hoc networks. 
Several recent studies related to the ACO are introduced as well.Vulnerability analysis of complex networks can 
be divided into three parts: structural, non-structural, and functional vulnerabilities. 

A. Structural Vulnerability 

Generally, structural vulnerability of complex network is divided into node vulnerability and edge 
vulnerability [10]. Vulnerability node is measured by node properties, e.g. degree, betweenness [11], clustering 
coefficient [12] and edge vulnerability by link removal.For directed graph, thenode degreeof a node is the sum 
of incoming and outgoing edges of that node. As for undirected graph, the node degree is the total edges of the 
node [13]. The node degree number is calculated using the vulnerability analysis when in the local state but not 
for global state. Not all the node with higher degree are vulnerable than other nodes.Mishkovski et. al. [5] 
defined metric of network vulnerability as a normalized average edge betweenness of a network, where network 
is modelled as a simple graph, G=(V,E), where V is a set of vertices or nodes together and E is the edges or lines. 

The average edge betweenness (b) of graph G is defined as:ܾሺܩሻ ൌ
ଵ

|ா|
∑ ܾ∈ா . The clustering coefficient is a 

measurement number that uses the node degree to show the nodes that tend to cluster together, i.e., zero when 
there is no clustering and one for maximal clustering. Maximal clustering happens when the network is 
consisted of disjoint cliques. Clustering coefficient is one of the vulnerability analyses parameter, because the 
higher the clustering coefficient is, the more vulnerablethe system is [4]. The objective of link removal is to 
optimize the robustness of the system i.e., to minimize the spread of infection. Eva et.al [14] proposed the 
quadratically constrained quadratic program (QCQP) algorithm by finding the equivalent set assignment in the 
network which minimizes a partition cost function. 

B. Non-structural and Functional Vulnerability 

Non-structural vulnerability consists of management of policy of each node in the network [2,15,16]. For 
example, the network security policy that defines which port is accessible and policy that defines the properties 
of each user.Functional vulnerability refers to internal and external factors of the network related to three main 
aspect: exposure, sensitivity and capacity of response [17]. Exposure is the overlapping factor of the dynamic 
networks as a result of variability in service. Sensitivity exhibits the emerging properties of dynamics network 
and capacity of response is the respond to variability in order to maintain the properties. 

The vulnerability function of a network N can be state as the impact of a certain disturbance d in the value of 
the target node n is given by its exposure, sensitivity  and capacity  of respond at time t: 
Vd,n,t(N)=f(,,).These classifications of vulnerability analysis in complex network become the base to perform 
the vulnerability assessments [18]. The vulnerability analysis flow chart is defined in Fig. 1. 
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Fig. 1. Vulnerability Analysis Procedure 

C. Vulnerability Analysis of Ad-Hoc Networks 

There are several vulnerability issues in ad-hoc networks, e.g., failed node, cooperative node, selfish node 
and malicious node [19].Afailed node is the node unable to perform the service or application, a cooperative 
node is the node that sends the packet data to the destination node, a selfish node is the node that exploits its 
resources for its personal interest, and a malicious node is the node that has intention to disrupt the service in the 
network.  Each of the vulnerability issue in ad-hoc networks is mapped into the vulnerability analysis 
classification. The vulnerability analysis in ad-hoc networks is defined in TABLE I. 

TABLE I.  Vulnerability Issues in Ad-hoc Networks 

Vulnerabilit
y Issue 

Structural 
Analysis 

Non-Structural 
Analysis 

Functional 
Analysis 

Existing Solutions 

Failed Node 

- broken link 
- out of coverage 
area 
- H/W breakdown 

- S/W defect 
- authorization 
failed 
- authentication 
failed 

- battery run out 
- no signal 

- power constraint 
- restart 
- add more coverage 

area/hotspot 

Cooperative 
Node 

- routing issue and 
path calculation 

- as hub or bridge 
in network 

- complexity 
applica-tion 

- security check 

- resource spent 
fas-ter 

- BW utilization 
- limited packet send to 
each node 

- randomize forwarding 
stra-tegy 

Selfish Node 

- linked with 
higher utility node 
- packet loss 
higher 

- used most of BW 
- forwarding 

service to other 
node 

- saving resources 
for personal 
interest 
- do not forward 
information to 
next nodes 

- watchdog mechanism 
- identifying and isolation 
- introduction of billing 

system 
- trusted the 3rd party 

system 
- sharing reputation 

information 

Malicious 
Node 

- attached with 
high-er-degree 
node 

- internal attack 
- DOS and routing 

attack 
- interpretation and 

eavesdropping 
- black hole attack 

- overload packet 
in the network 

- authentication scheme 
- data integrity system 
- cryptography method 
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D. Recent Related Applications of Ant Colony Optimization 

Dewi et al. [20] presented the type of the ACO for routing algorithm in mobile ad-hoc networks. The ACO 
meta-heuristic is targeted towards optimization problems that can be solved as shortest path problems on graphs. 
The ACO is also used for modelling, the vulnerability detection [21], and performance evaluation [9]. Ants 
construct solutions to optimization problems by moves around in a graph and use stigmergy to communicate 
their experiences. 

The ACO has been used for problem detection in several application areas. Francesca et al [22] used the ACO 
to reduce the state explosion problem when looking for deadlocks in complex distribution network. Xu et al. [23] 
also proposed the ACO for detecting community in bipartite network.Zang et al. used the ACO for fault section 
location detection in concurrent system [24]. 

 
(a)                                                                                             (b) 

Fig. 2. Comparison between the ACO (a) and the genetic algorithm (b) 

Fig. 2 shows that the genetic algorithm (GA) detects the solution faster compared to the ACO algorithm. 
However, if there is a change in the networks, the GA becomes slower compared to the ACO in acquiring the 
solution. Although the GA is the fastest algorithm to find the best solution, when there is a sudden change in the 
network condition, the GA cannot obtain the best solution due to the local optima problem. In contrast, the ACO 
algorithm can acquire the best solution even though in dynamic network condition. 

III. MODELLING AND ANALYSIS OF VULNERABILITY ISSUES 

A. Modelling Node Vulnerability as a Semi-Markov Process 

There are some constraints in modelling the vulnerability issue of ad-hoc networks as follows. First, the 
model is based on node vulnerability issue. The definition of each type of node is based on the packet 
throughput. Second, the transition of each type of node issues is defined by transition probability that consists of 
the power consumption rate and the failure rate as the time goes to the infinity. Third, there is no difference 
between a source node and a destination node, since the process starts from the cooperative state. Finally, the 
resource is limited, so, as the time goes to infinity, the resource power will go to zero and there is no concept of 
recharging. 

From the constraint above, the state transition for each type of node vulnerability [25] can be state as 
follows.A cooperative node can remain cooperative or becamea selfish node, a malicious node or a failed node 
in the future. A failed node has toremain at a failed state. A selfish node can remain selfish, or became a 
malicious node or a failed node. Amalicious node can remain malicious or became a failed node in the future. 

The model parameters of the vulnerability issues are based on (1) the number of packets received and 
transmitted in period of T, and (2) the cost power function Ci(t).Acquiring data at a nodein T, denoted by DA(T), 
is defined as the number of packets received in T minus the number of packets consumed in T at that node. 
Forwarding data in T at a node, denoted by DF(T), is defined as the number of packets transmitted in T minus 
the number of packets initiated in T at that node. Data utilization at a nodein T, denoted by DU(T), is defined as 
the number of packets initiated in T plus the number of packets consumed in T at that node. From those 
definitions, the fraction of forwarding at a node in T, denoted by CF(T), is defined as: CF(T) = DA(T) - DF(T)  0. 
The condition that CF(T) equals to zero is called perfect forwarding which means that all acquired data has been 
forwarded. Nonzero CF(T) indicates that some data has been ignored at a node without being forwarded. The 
data utilization rate at a node in T, denoted by RU(T), is defined as DU(T)/DT(T), and the data consuming rate at a 
nodein T, denoted by RC(T), is defined as DF(T)/ DA(T).By assuming that each node initially starts with the same 
power energy, the cost power function Ci(t) is defined as Ci(t) = iF/Ri(t), where i is the power consumption 
rate, F is the full-charge battery capacity of node i and Ri(t) is the remaining power left of node i at time t.If the 
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degree calculation, which can indicate that a node is vulnerable or not.Vulnerable nodescan be detected by the 
ACO approach utilizing both heuristic and pheromone values. Furthermore, when a vulnerable node is detected, 
the propose algorithm finds a new available path without the vulnerable node. The simulation results have 
shown that the proposed algorithm based on the ACO lowers the vulnerability index with maintainingthe 
throughput. For future work, dynamic and adaptive vulnerability thresholdsmay be studied to improve the 
performance of the proposed algorithm. 
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