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Abstract—The work focuses on deployment of novel underwater target estimation algorithm to 
determine the kinematic state of the target. The Target Motion Parameters (TMP) are found out using 
bearings-only measurements. If one of the target motion parameters is known, then the rest of them can 
be found out using the known parameter. The Pseudo Linear Estimator (PLE) algorithm is considered in 
this paper which is one of the simplest estimation algorithms is presented in this paper to estimate TMP. 
It is assumed that target speed is known by some means, then the target course and range is obtained 
using PLE. PLE incorporates the basic features of Kalman filter like sequentially processing, variance 
included in measurement. The Monte-Carlo simulation is carried out for the tactical geometries and 
various results demonstrate the superiority of PLE over it’s peers for underwater target tracking 
applications. 

Keywords - sonar, targe tracking, algorithm, estimation,simulation,sequential processing 

Nomenclature 

Xs (k)               Target state vector  

k)|1+k(φ       State transient matrix 

b(k+1)                Deterministic vector 

t                         Dampling time 

Bm(k)                Bearing measurement 

Rx(k)                 Range component in X-direction 

)k(Ry                  Range component in Y-direction  
η (k)                  Error in the bearing measurement 

R(k)                   Range between observer and target at time index k 

0B                       initial bearing measurement 

Tcr                      target course 

Vt                        target speed  

I. INTRODUCTION 

This Target Motion Analysis (TMA) especially in two coordinate approach is conventional utilized for 
undersea target tracking. The observer listens to the noise emitted from the radiating target (i.e.,passive mode). 
The Line of Sight (LOS) or bearing measurements are only available in passive mode while range  as well as 
bearing measurements are available in conventional active mode of surveillance. The process of target motion 
estimation in passive mode is posed as non-linear estimation problem due to non-linear relation between target 
state and LOS measurements. The LOS measurements from acoustic source are monitored by single observer 
and therefore the observer has to maneuver for range observability of the target. The absence of maneuver is 
compensated by using utilising Doppler measurements along with bearing measurements[1-3],altitude[4] and 
range as well as bearing measurements[5].But without any observer movement, the paper introduces new 
method in passive target tracking . The target state vector consists of position and velocity in X and Y co-
ordinates. The LOS measurements are processed to track the target. 
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In[5], batch mode is used which is not suitable for practical applications. This paper transforms the batch 
mode in recursive mode which less computational effort as well as time[9]. The covariance matrix is updated 
recursively in terms of increment of the new measurement with reduction in time as well as burden. 

The mathematical modeling of PLE with recursive mode is demonstrated in section II.The simulation along 
with results is presented in the consecutive section and concluded in section IV. 

II. MATHEMATICAL MODELING 

The modeling of target dynamics is presented in this section. The target state equation is given by [8] 
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where η (k) is zero mean Gaussian with variance σ 2 .  The TMP can be estimated in two methods, one 

the target is in non maneuvering mode and another in maneuvering mode. In non maneuvering state of the 
target, b (k+1) is equated to zero. The manipulation of these equations yields  
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R(k) η(k)ξ(k) =                        (8) 
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The TMP estimation is carried out using the initial Xs (k), then eqn. (9) is redefined in the following 
fashion  
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In case of k measurements,  
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Where we have A'A −= , then the least square of estimation of Xv is 
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The target course, tcr, can be calculated as 
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To calucate S matrix.  
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In batch mode, computational effort is more due numerous samples. The following sub section describes 
the estimation problem in sequential mode. 
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A. SEQUENTIAL PROCESSING: 

After the arrival of the first bearing measurement  
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In this way the target course can be found out easily after 2nd measurement onwards. 

B.Target Motion parameters when initial range is known 

Using sophisticated techniques , prior knowledge about range is known . The procedure to obtain the 

remaining target motion parameters is given here. 
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The least square solution is given by 
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00m00m

−−−=
         (44) 
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 As we have done earlier, let us convert eqn. (45) for sequential processing.  

[ ] [ ]
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 (0)B cos* range initial(0)R    my =  

Using the above ,  
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 tcr is  

      







= −

Q(2,1)

Q(1,1)
Tantcr 1             (49) 

 vt is  

      vt = )0(R*)1,2(Q)1,1(Q y
22 +          (50) 

C.Target Motion parameters when target course/speed  is known 

Initially , calculate tcr for assumed ranges.  The value of range estimate for which estimated tcr is 
numerically equal to actual course is the accurate range estimate .  If course and range is known , then the speed 
of the target is found out easily. The procedure can also be implemented if target speed is available initially.  
This procedure is easier compared to range estimation using eqn. (45) 

III. SIMULATION &  RESULTS 

The TMP estimation without observer maneuver which is very complicated. The target course can be 
determined using non  maneuvering observer. The simulation study is carried for various tactical geometries, 
out of which one is presented for reference. Initial range  and bearing are 5000 m and 40 degrees and target 
speed is 30 knots while ownship speed is 20 knots and with 90 degree course. 

The ownship is assumed to be moving at a speed of 20 knots (10.3 m/sec) (at zero speed while estimating 
the target course) and at 90 deg course. (All angels are considered with respect to Y axis).  Number of scenarios 
is tested by changing the course of the target in steps of 1 degree in such a way that the angle between the target 
course and line of sight is always less than 55 degrees, as only closing targets are of interest to the observer. In 
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general, the error allowed in the estimated target motion parameters in underwater are eight percent in range 
estimate, 0.2 degrees in bearing estimate, five degrees in course estimate and three meters/sec. in velocity. For 
the purpose of analysis, this scenario with target course equal to 165 degrees is considered. The results of this 
scenario after several Monte Carlo runs are shown in figures 1. From the results, it is observed that course 
estimate with required accuracy is obtained from around 100 seconds onwards. For the same scenario, the target 
course is fed from 100 seconds onwards to estimate the range and speed. The results are shown in Fig 1 (b) and 
Fig. 1.(c). 

 
Fig 1. (a) Error in course estimate 

 
Fig 1. (b) Error in range estimate 
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Fig 1. (c) Error in speed estimate 

IV. SUMMARY & CONCLUSION 

The paper discusses the sequential mode of PLE estimation algorithm against the batch type. The 
incremental values of the measurements are only computed at every time and updated to the variables, which 
are taken here as SUMS. The observer is to be in non-maneuvering state while course estimation. If one of the 
TMP is known by any means, then the rest of them can be determined with prior knowledge about this single 
parameter. The results inferred the sequential PLE is suitable for target tracking in undersea applications. 
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