
Towards Performance Improvement of
Cloud Applications under Virtualized

Environment using PSO based K-means++
Algorithm

A.P.Nirmala#1, Dr.R.Sridaran*2,
#1 Research Scholar, Karpagam University, Coimbatore & Assistant Professor,

New Horizon College of Engg.Bangalore, India.,
#1 nirmalasuresh.ap@gmail.com

*2 Dean, Faculty of Computer Applications,
Marwadi Education Foundation's Group of Institutions, Rajkot, India

*2 sridaran.rajagopal@gmail.com

Abstract— Virtualization generally provides performance isolation between virtual machines running
simultaneously on a single physical machine. But isolation does not happen to its fullest extent which may
lead to performance interference. Due to this, the performance of applications running on one VM may
get affected by running applications of co-existing VMs. This further leads to delay in execution time. As
a result of this, throughput of cloud applications will be degraded. In order to deal with this situation, the
proposed work has been presented which uses Particle Swarm Optimization based k-means++ algorithm
for its implementation. The proposed work has been compared with some of the existing approaches and
found to have better throughput and reduction in run time and cost.

Keyword- PSO based k-means++, Performance interference, Throughput, Virtualization, Scheduling, Fast
genetic k-means++

I. INTRODUCTION

Virtualization is one of the most significant topics in the field of information technology. Server virtualization
is the commonly used forms of the virtualization in Cloud computing (CC) [16]. In server virtualization, a single
physical system is partitioned into multiple, independent logical systems. Thus, it provides flexibility for a
single physical server to be used as multiple Virtual Machines (VMs).

VM software, a hypervisor or a virtual machine monitor (VMM) that runs on a server under virtualized
environment. It enables a single physical machine to support a number of guest operating systems (OSs), each of
which runs on its own virtual instance of the underlying physical machine. For example, Linux, Windows, Mac
OS and Solaris can run on separate VMs within a single physical virtual server platform [19][5] and this is
depicted in Fig.1.

Fig. 1 Virtualized cloud environment

Virtualization has many advantages including the ability to slice a physical machine in terms of CPU and
memory space. Despite of its advantages, there is a need for fault and performance isolation against the
unexpected behaviors among the VMM and VMs. In fault isolation, faults and misbehaviors in one VM are not
transmitted either to the hypervisor or other VMs hence it is well addressed by existing virtualization techniques.

In performance isolation, a VMM manages the VMs running on a single platform and also guarantees that
they are functionally isolated from each other. However, Qun Huang et. al [2] enlightened that it could be

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1557

difficult to achieve in full extent. Hence, virtualization does not provide effective performance isolation between
VMs. The same is emphasized by Koh et. al [3] that the performance of one virtual machine might vary at
different times depends on other VMs in the physical host. Thus it leads to performance interference between
the VMs that are co-located at each physical machine (PM). As all VMs share the same physical resources, they
also mutually influence each other. According to X. Pu et. al [5], VMMs (hypervisors) have the ability to slice
down resources and allocate the shares to different VMs where the applications running on one VM may still
affect the performance of applications running on its neighbourhood VMs. As a result, interference might be a
barrier in attracting performance sensitive customers. Further, interference exists when the co-located VMs are
concurrently competing for hardware resources. Cloud users may suffer from performance degradation in terms
of slowdown of tasks’ execution time. This may reduce the rate of completion jobs within their deadlines.

Hence, this becomes the need of the hour to develop architectural techniques that would ensure proper
sharing of resources allocated to VMs running simultaneously in the physical machine. Effective management
of virtualized cloud environments introduces new and unique challenges such as efficient CPU scheduling for
VMs, effective allocation of VMs to handle both CPU intensive and I/O intensive workloads. Based on this,
many novel scheduling algorithms can be thought of. The primary objectives of these algorithms is to either
minimizing the negative impacts of co-located applications or improving the overall system performance based
on throughput [4], [1]. Ron C. Chiang et. al [1] discusses how the system can make optimized scheduling
decisions that would lead to significant improvements in both application performance and resource utilization.

K-means algorithm is an iterative method of cluster analysis. In the iterative process, the distance between the
observation point and cluster center is to be minimized. The limitation with this algorithm is, it may converge to
local minimum if no proper initialization of cluster center is made. Since K-means algorithm converges to a
local minimum, Genetic Algorithm (GA) is used for the purpose of finding the global minima [13], [14].
According to Ron C. Chiang et. al in [1], since k-means++ algorithm makes a good choice of initial k centers it
can be utilized to replace k-means algorithm. K-means++ picks each point at random with probability
proportional to the squared distance. Thus k-means++ is combined with genetic algorithm to find optimized
solution. This motivates us to propose scheduling algorithms to improve the performance in terms of throughput,
runtime and also cost in the virtualized environments. Hence, fast genetic k-means++ algorithm was proposed
and it was implemented by conducting a comprehensive evaluation with a variety of cloud applications in our
previous work [26].

As Particle Swarm Optimization (PSO) is a popular algorithm [8], [9], [10], [11] and it has a faster
convergence rate than GA, PSO algorithm is proposed for finding the global optimal solution. Extension to our
previous work, the proposed PSO based k-means++ algorithm aims at improving the performance by scheduling
the task to various VMs with minimized interference occurs from co-located applications. The algorithm is
designed in a way that it reduces the runtime and improves the I/O throughput for data-intensive applications in
a virtualized environment. As soon as the task arrives, the scheduler generates a number of possible assignments
based on the incoming tasks and list of available VMs. Then the scheduler makes the decision for scheduling
and assigning the task to different servers based on the predictions.

This paper is organized as follows: section II provides the related work, section III explains the proposed
methodology and experimental results are discussed in section IV. Section V gives the conclusion with future
work.

II. RELATED WORK

X. Pu et al. [5] have discussed the performance interference among VMs which run the network workloads in
virtualized environments. In their work, the authors have considered certain system-level characteristics as
metrics to identify the impact on the throughput when running different combinations of workloads with
different file sizes. Many experiments are conducted for each combination of workloads and factors that may
lead to performance interferences are found out. But the above work does not describe how to mitigate the I/O
interference for data-intensive applications. Several research works are available to assess the performance
degradation of VMs due to interference which are illustrated in [7], [3]. Though these studies propose the
different types of benchmarks relating to VM interference, mitigation of interference effects are not analysed.

DeepDive is a system for VM migration proposed by D. Novakovic et. al [19]. It recognizes interference-
inducing VM and migrates that to destination physical machine where least interference is observed. In
DeepDive, the authors mainly considered the placement of VMs in order to reduce the interferences.

In Paragon [20], test benchmarks are proposed to detect the interferences and their impacts on co-located
applications. It uses past-scheduled applications to decide on the best placement for any new application with
respect to interference in the place of profiling. Instead of scheduling the applications in a VM, Paragon
classifies and schedules the application on a hardware platform itself to mitigate interference.

Altino Sampaio et. al in [21] have discussed the algorithms which are used to schedule VMs dynamically in
order to mitigate the performance interference due to hardware resources such as last-level cache(LLC) sharing.

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1558

The authors intend to maximize the rate of completed tasks by constructing performance-efficient computing
environments that reacts to performance degradation arise from sharing of LLC memory. QoS-aware control
framework, Q-clouds [18] is developed to minimize performance interference effects. It uses a multi-input
multi-output (MIMO) model that tunes resource allocations to capture the performance interference in a
virtualized environment and focuses only on the CPU bound workload.

According to [29], [30], PSO is considered as more suitable algorithm in cloud computing. Since the initial
particles are created randomly in PSO algorithm, this leads to reduce the opportunity of converging to best
solution. Solmaz Abdi et. al [22] proposed, PSO algorithm merged with shortest job to fastest processor
algorithm (SJFP) in order to improve the performance of the PSO algorithm.. Shaobin Zhan et. al in [24]
involved simulated annealing with PSO in each iteration, in order to achieve fast convergence rate. Thus, PSO
algorithm can be improved in performance by merging it with suitable algorithms [22], [24], [27], [28].

Saurabh Bilgaiyan et al. [30], focused on the need of proper scheduling in cloud computing environment, as
the process of scheduling is important to manage resources, minimize the idle time and increase the performance
of systems. In their work, the authors have analyzed the different evolutionary and swarm based algorithms for
task scheduling by discussing their advantages and the mechanism used in those algorithms.

Shengjun Xue et. al [23], have discussed that improved ant colony optimization scheduling algorithm can
allocate the resources for tasks and improve the utilization rate of resources. The authors in their work focused
on reducing the execution time and also avoiding the resource wastage by balancing the number of tasks
assigned to virtual machines based on its capability. But they do not focus on the cost issues. Gang Zhao [25]
highlights the importance of considering the usage cost of resources. He has further proposed fitness function to
achieve a balance between the minimization of processing time and total cost but throughput is not taken into
account.

K. Krishna et. al [13] have illustrated that, K-means algorithm is the simplest and the most popular clustering
algorithm but it may converge to local optimal solution. Hence the authors have proposed that genetic k-means
algorithm finds the global optima. Ron C. Chiang et. al [1] further proves that k-means++ algorithm picks each
point at random with probability proportional to the squared distance instead of choosing the point farthest from
the already chosen points. Thus k-means++ is combined with genetic algorithm to find optimized solution in our
previous work [26].

Our proposed work extends this phenomenon using PSO based k-means++ algorithm in place of genetic
algorithm for finding global optimal solution. It is similar to Paragon [20], as far as the placement of application
is concerned in scheduling. In contrast to [18], [19], our proposed work focuses on data-intensive applications. It
is essential to address the challenges of the I/O interference when running data-intensive applications as cloud
applications are data centric in a virtualized environment. Contrary to DeepDive [19], it considers the placement
of tasks in appropriate VMs to reduce the interferences. PSO based k-means++ is a combination of PSO
algorithm with k-means++ is proposed to make the optimized decisions in order to improve the overall
performance by considering not only the time and cost but also the throughput, unlike the authors in [23], [25], as
they considered cost and time only.

III. PROPOSED WORK

The proposed work uses PSO based k-means++ scheduling algorithm to improve the application performance
in a virtualized environment. Further, Levenberg-Marquardt method [17] has been applied as the Interference
Prediction Model (IPM) which works by collecting the application performance from the resource consumption
observed from multiple VMs. This model is built with five parameters (controllers) denoting CPU utilization in
VMM, CPU consumption from data processing of application, I/O request, cost and job per cloudlet.
Interference profile is generated by running the given application on one VM, while the remaining (n-1) VMs
execute various workloads in the background where the n VMs being considered in the virtualized environment.
This approach facilitates online learning of IPM that is dynamically modified and monitored for various
applications in the cloud platform. Further, Interference Aware Scheduling (IAS) aims at reducing the runtime
and improving the I/O throughput for data-intensive applications in a virtualized environment. It schedules and
allocates the tasks to various VMs with minimized interference occurring from co-located applications.

PSO based k-means++ algorithm has been applied for the purpose of improving the performance of the
applications in the cloud environment. When the task arrives, the scheduler continues to generate different
possible assignments of the same, based on the incoming tasks and list of available VMs. Afterwards, the
scheduling process is carried out by assigning the tasks to different servers based on the predictions. The
performance of the above algorithm has been tested on the application throughput, runtime and cost whose
results observed are widely discussed under section IV.
A. PSO based k-means++

K-Means algorithm (KMA) is an iterative algorithm which starts with initialization of cluster centers [11].
This algorithm aims at partitioning n observations (objects) into k clusters. Every observation point is assigned

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1559

to one cluster that has minimum distance between the observation point and the cluster center. This process is
repeated in each iterations and the algorithm stops when the mean distance between the observation point and
the cluster center is minimized or when fixed number iterations are reached.

The major weakness with KMA is its tendency to converge to a local minimum in case of no proper selection
of initial partition is made and this may have an influence on the final solution. This is avoided through certain
optimization approaches like GA and PSO. One more weakness of KMA is that, with respect to its choice of
points that are far away from each other. On the other hand, K-means++ algorithm tends to make a good choice
of initial k centers to overcome the drawback of KMA. Moreover, it will pick each point at random with the
probability proportional to the squared distance rather than the point farthest [12]. Due to these two reasons, K-
means++ has been used in the proposed work.

Fast k-means++ algorithm was proposed in our previous work [26] to overcome these drawbacks by
combining GA with k-means++. Similar to GA, PSO is another popular algorithm which has the capability to
achieve global optimistic solution. But PSO has a faster convergence rate than GA. In addition, PSO has fewer
mathematical operators compared to GA which makes the applications less dependent on modifying those
operators. PSO is faster than GA in assigning the tasks and also gives better schedule than GA in distributed
computing systems and Grid computing. In K-means++, convergence rate is faster in finding local optimum
solution whereas it is weaker in finding the global solution and thus motivates the combination of PSO and k-
means++ by considering the advantages of both the algorithms in virtualized environment [10].

PSO based k-means++ algorithm is proposed by combining the ability of the globalized searching of PSO
and the fast convergence of k-means++ as our proposed work revolves around the cloud computing environment.
PSO based k-means++ algorithm consists of two modules namely PSO and K-means++. At the initial stage, the
PSO module is executed for a short period to search for the clusters’ centroid locations. The locations are given
as input to the K-means++ module for refining and generating the final optimal clustering solution.

1) PSO module: PSO is an optimization algorithm which simulates the behavioral patterns of bird flock. In a
flock of birds moving over an area in search of food, the one which is nearest to the food makes a sound and the
other birds start to move forward and backward in its direction. In this process, if any other bird in the flock
comes closer to the food than the first, it signals the others in the flock and those birds start to move towards that.
This process continues till one of the birds reaches the food [6]. A similar approach has been adapted in the
proposed work for assigning the tasks to suitable VMs.

PSO module consists of particles (tasks) that constitute a swarm, moving around the search space looking for
the best solution. Each particle keeps track of its coordinates in the solution space which are associated with the
best solution (fitness) that has been achieved so far by that particle. This value is called personal best, pbest. If
any neighborhood of the particle obtains best value than the pbest, then this value is called global best, gbest.
The basic concept of PSO lies in accelerating each particle towards its pbest and the gbest locations, with a
random weighted acceleration at each time [6]. Each particle keeps changing its position based on the distance
between the i) current position and pbest and ii) current position and gbest

Each particle can be shown by its current speed and position, the most optimist position of each individual
and its surrounding. The speed and position of ith particle changes according to the following equations 			ݒ௜ௗ = ௜ௗݒ∗ݓ + ܿଵ	∗݀݊ܽݎଵ	∗(݌௜ௗ − (௜ௗݔ + ܿଶ	∗݀݊ܽݎଶ	∗(݌௚ௗ − ௜ௗݔ ௜ௗ) (1)ݔ = ௜ௗݔ + (2)			௜ௗݒ

where w denotes the inertia weight factor; ௜ܲௗ the location of the particle that experiences the best fitness
value; ௚ܲௗ the location of the particles that experience a global best fitness value and ܿଵand ܿଶare constants that
are known as acceleration coefficients, d the dimension of the problem space, ݀݊ܽݎଵand ݀݊ܽݎଶ are random
values in the range of (0, 1). The inertia weight factor w provides the necessary diversity to the swarm by
changing the momentum of particles to avoid the stagnation of particles at the local optima.

Equation 1 requires each particle to record its current coordinate ௜ܺௗ, its velocity ௜ܸௗ that indicates the speed
of its movement along the dimensions in a problem space and the coordinates ௜ܲௗand ௚ܲௗwhere the best fitness
values were computed. The best fitness values are updated at each generation, based on the following equation:

௜ܲ(ݐ + 1) = ቊ ௜ܲ(ݐ)															݂൫ܺ௜(ݐ + 1)൯ ≤ ݂൫ ௜ܺ(ݐ)൯௜ܺ(ݐ + 1)						݂൫ ௜ܺ(ݐ + 1)൯ > ݂൫ ௜ܺ(ݐ)൯	 (3)

In the above equation, variable f indicates fitness function and ௜ܲ(t) indicates best fitness values and the
coordinates, where the value was calculated and t denotes the generation step.

Each particle maintains a matrix ௜ܺ= (ܥଵ, ܥଶ, …, ܥ௜, .., ܥ௞), where ܥ௜ represents the ݅௧௛cluster centroid vector
and k is the cluster number. For each iteration, the particle adjusts the position of the centroid vector in the
vector space according to its own experience and those of its neighbors. The average distance between a

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1560

centroid of the cluster and a point is used as the fitness value to evaluate the solution represented by each
particle. This fitness value is measured by the equation given below:

c

N

i

p

j
i

N
p

od

f

c

i




=

=

= 1i

1
ij

}
)m ,(

{
 (4)

where ݉௜௝ denotes the jth point vector that belongs to cluster i, ௜ܱ the centroid vector of ith cluster, d(௜ܱ, ݉௜௝)
the distance between point ݉௜௝ and the cluster centroid ௜ܱ, ௜ܲstands for the point number which belongs to
cluster ௜ܱ and ௖ܰ stands for the cluster number [6].

2) K-means++ module: The K-means++ module will inherit the result of the PSO module as the centroids
for initial clustering and will continue processing the optimal ones by recalculating them based on equation 5,
to generate the final result.

௝ܿ = ଵ௡௝ ∑ ௝݀∀ௗೕ∈ௌೕ (5)

where ௝݀ denotes the point vector that belongs to cluster ௝ܵ, ௝ܿ for the centroid vector and ௝݊ is the number of
point vectors that belong to cluster ௝ܵ.

The algorithm given in Fig.2 provides the flow of PSO module and k-means++ module to find the optimized
result.

Fig. 2 Pseudo code of PSO based k-means++

IV. EXPERIMENTAL RESULTS & DISCUSSION

The proposed algorithm is evaluated and compared with i) Fast genetic K-means++ and ii) K-means++
algorithm [1], [26] by measuring the performances based on the cost, throughput and run time. In order to
generate a more realistic workload, we randomly choose the data sets, data sizes and number of processes. From
the comparison of results, the improvements in the performance of virtualized environment are illustrated.
A. PSO based k-means++

The experimental setup that has been used for the implementation consists of Intel Core2 duo CPU with 3.40
GHz speed, 4GB RAM and 500 GB capacity hard disk. The software tools used are Java for coding the
simulator, Mysql for data store and Cloudsim [15] for simulating the virtualized environment. For the purpose
of testing the algorithms, files various types such as pdf, image and text are used.
B. Performance evaluation

The application throughput is evaluated in terms of number of tasks completed per unit time. When the task
arrives, the scheduler decides the scheduling and assigning the tasks to VM based on minimum CPU utilization
using different scheduling algorithms such as k-means++, fast genetic k-means++ and PSO based k-means++
algorithm. The normalized application throughput is measured for all these algorithms. The observed throughput,
running cost and the run execution time taken up by the cloud application such as pdf, text and image files in the

Begin
1. t = 0
2. Initialize particle randomly
3. Evaluate fitness function P(t).
4. Finding pbest value
5. If the termination criterion is not satisfied, go to Step 3
6. Update the velocity and position of the particle
7. Finding gbest value, the optimized solution by K-means++ as given below.

a) The data set is reassigned to clusters according to nearest rule.
b) Cluster centroids, fitness value are recalculated and positions are updated

8. If the position is satisfactory or the maximum iteration is reached, then process is stopped.
Otherwise t = t + 1, go to Step 3.

End

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1561

experiment are shown in Fig.3&4. It is found that, PSO based k-means++ achieves better throughput than the
other two namely fast genetic k-means++ and k-means++ algorithm as in Fig 3.

Fig. 3: Throughput Comparison

The cost for running the cloud application is calculated based on cloud usage time. The cost is handled by
performing the function with the minimal running time. Based on the consumption, the cost is computed as Rs.1
per second. So, the cost for k-means++ is 42	× 1 = Rs. 42, the cost of Fast genetic k-means++ is 23	 × 1 =Rs. 23	, whereas the cost for the PSO based k-means++ is 10 × 1 = Rs. 10	. Hence the proposed technique
takes the least time and lowest cost while compared with existing techniques. The comparison of three
algorithms for the same cloud data is shown in Fig.4.

Fig. 4: Comparison of Time and Cost

V. CONCLUSION

The proposed work has been proven to gain the combined advantages of particle swarm and k-means++
algorithms. The results show promising improvements in terms of increased throughput, reduce the runtime and
cost over the existing approaches. This may be extended by considering certain other parameters like memory,
disk usage and network I/O traffic.

REFERENCES
[1] Ron C. Chiang and H. Howie Huang, “TRACON: Interference-Aware Scheduling for Data-Intensive Applications in Virtualized

Environments”, IEEE Transactions On Parallel And Distributed Systems, IEEE 2013.
[2] Qun Huang and Patrick P. C. Lee,” An Experimental Study of Cascading Performance Interference in a Virtualized Environment“,

ACM SIGMETRICS Performance Evaluation Review, Volume 40 Issue 4, March 2013.
[3] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An Analysis of Performance Interference Effects in Virtual

Environments. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2007, pp. 200-209.
[4] Ron C. Chiang and H. Howie Huang. TRACON: Interference-aware scheduling for data-intensive applications in virtualized

environments. In Proc. Of SC, pages 1 –12, nov. 2011.
[5] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu. Understanding performance interference of I/O workload in virtualized cloud

environments. In Proc. of CLOUD, pages 51 –58, july 2010.
[6] J Kennedy, and RC Eberhart, "Particle Swarm Optimization,'' in Proc. the IEEE International Joint Conference on Neural Networks,

Vol. 4, pp 1942–1948, 1995.
[7] H. Shan, K. Antypas, and J. Shalf. Characterizing and predicting the I/O performance of HPC applications using a parameterized

synthetic benchmark. In Proc. of SC, pages 42:1–42:12, Piscataway, NJ, USA, 2008. IEEE Press.
[8] Nadjet Kamel, Imane Ouchen, Karim Baali, “A Sampling-PSO-K-means Algorithm for Document Clustering“, Genetic and

Evolutionary Computing Advances in Intelligent Systems and Computing Volume 238, 2014, pp 45-54.
[9] Alireza Ahmadyfard, Hamidreza Modares, “Combining PSO and k-means to Enhance Data Clustering “,2008 Internatioal Symposium

on Telecommunications.

1.13

8.66

19.91

0
2
4
6
8

10
12
14
16
18
20

K-means++ Fast genetic k-
means++

PSO based k-
means++

Throughput(MB)

42 42

23 23

10 10

0

10

20

30

40

50

Time(Sec) Cost(Rs)

Run time & Cost

K-means++

Fast genetic
k-means++

PSO based k-
means++

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1562

[10] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, Rajkumar Buyya. “ A Particle Swarm Optimization-based Heuristic for
Scheduling Workflow Applications in Cloud Computing Environments”, Advanced information networking and applications (AINA),
2010 24th IEEE International conference.

[11] Mehdi Neshat, Shima Farshchian Yazdi, Daneyal Yazdani and Mehdi Sargolzaei, “A New Cooperative Algorithm Based on PSO and
K-Means for Data Clustering“, Journal of Computer Science 8 (2): 188-194, 2012 , ISSN 1549-3636, Science Publications.

[12] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In SODA’07.
[13] K. Krishna and M. NarasimhaMurty, “Genetic K- Means Algorithm”, IEEE Transactions On Systems, Man And Cybernetics—Part

B:Cybernetics, Vol. 29, No. 3, June 1999.
[14] Yi Lu, Shiyong Lu, FarshadFotouhi, Youping Deng, Susan J. Brown,” FGKA: A Fast Genetic K- means Clustering Algorithm”, ACM,

2004.
[15] RajkumarBuyya, Rajiv Ranjan, Rodrigo N. Calheiros,“Modeling and Simulation of Scalable Cloud Computing Environments and the

CloudSim Toolkit: Challenges And Opportunities”, in The 2009 International Conference onHigh PerformanceComputing and
Simulation, HPCS2009, pp:1-11.

[16] Ravi Iyer, Ramesh Illikkal, OmeshTickoo, Li Zhao, Padma Apparao, Don Newell, “VM3: Measuring, modeling and managing VM
shared resources”, 2009 Elsevier Computer Networks 53 (2009) 2873–2887.

[17] K. Madsen, H.B. Nielsen, O. Tingleff, “Methods for Non-linear Least Squares Problems Informatics and Mathematical Modelling”,
Technical University of Denmark. April 2004.

[18] R. Nathuji, A. Kansal and A. Ghaffarkhah, ” Q-Clouds : managing Performance interference effects for qos-aware clouds”. In
EuroSys ’10.

[19] D. Novakovi´c, NedeljkoVasi´c, Stanko Novakovi´c, DejanKosti´c, and Ricardo Bianchini. DeepDive: Transparently Identifying and
Managing Performance Interference in Virtualized Environments. Technical Report 183449, EPFL, 2013.

[20] C. Delimitrou et al. Paragon: QoS-aware scheduling for heterogeneous data centers. In ASPLOS, 2013.
[21] Altino Sampaio, Jorge G. Barbosa, Parallel & Cloud computing, PCC Vol. 2 Iss. 4, 2013 PP. 116-125 www.vkingpub.com © 2013

American V-King Scientific Publishing.
[22] Solmaz Abdi, Seyyed Ahmad Motamedi, and Saeed Sharifian, “Task Scheduling using Modified PSO Algorithm in Cloud Computing

Environment”, International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME'2014) Jan. 8-9,
2014 Dubai (UAE).

[23] Shengjun Xue, Mengying Li, Xiaolong Xu, and Jingyi Chen, “An ACO-LB Algorithm for Task Scheduling in the Cloud Environment”,
JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014.

[24] Shaobin Zhan, Hongying Huo, “Improved PSO-based Task Scheduling Algorithm in Cloud Computing”, Journal of Information &
Computational Science 9: 13 (2012) 3821–3829.

[25] Gang Zhao , Cost-Aware Scheduling Algorithm Based on PSO in Cloud Computing Environment , International Journal of Grid and
Distributed Computing Vol.7, No.1 (2014), pp.33-42 ISSN: 2005-4262.

[26] A.P.Nirmala, Dr. R. Sridaran,“A Novel architecture for improving performance under virtualized environments” (IJCSIS)
International Journal of Computer Science and Information Security, Vol. 13, No. 1, January 2015.

[27] Xiaohui Cui and Thomas E. Potok, “Document clustering analysis based on hybrid PSO+K-means algorithm”, Journal of Computer
Sciences (special issue), 7-33, 2005. ISSN 1549- 3636.

[28] Sheng-Jun Xue, Wu Wu, “Scheduling Workflow in Cloud Computing Based on Hybrid Particle Swarm Algorithm”, TELKOMNIKA
Indonesian Journal of Electrical Engineering, vol. 10, no. 7, (2012), pp. 1560-1566.

[29] L Guo, S Zhao, S Shen, C Jiang , “Task Scheduling Optimization in Cloud Computing Based on Heuristic Algorithm”, - Journal of
Networks, 2012.

[30] Saurabh Bilgaiyan, Santwana Sagnika, Madhabananda Das, “An Analysis of Task Scheduling in Cloud Computing using Evolutionary
and Swarm-based Algorithms”, International Journal of Computer Applications (0975 – 8887) Volume 89 – No.2, March 2014.

AUTHOR PROFILE

A.P.Nirmala received her MCA and M. Phil., degree in Computer Science from Bharathiar University,
Coimbatore in 2000 and 2006 respectively. She is pursuing her Ph.D at Karpagam University, Coimbatore, India.
She is presently working as Assistant Professor in the Department of MCA, New Horizon College of
Engineering, Bangalore, India. She has 13 years of teaching experience. Her research area is Cloud Computing.
She has published 2 research papers in International Journals and presented 8 research papers in National
Conferences.

Dr.R.Sridaran is a Ph.D in Computer Science from Madurai Kamaraj University. He has published 25+
research papers in leading journals and presented in many conferences. He is presently guiding eight research
scholars in the areas of Cloud Computing, e-learning and Software Engineering. He has got 22 years of
academic experience and served in leading educational institutions at different capacities. He is currently the
Dean of Faculty of Computer Applications, Marwadi Education Foundation, Rajkot. He is also the Chairman,
Computer Society of India Chapter of Rajkot.

A.P.Nirmala et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 5 Oct-Nov 2015 1563

	Towards Performance Improvement ofCloud Applications under VirtualizedEnvironment using PSO based K-means++Algorithm
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED WORK
	IV. EXPERIMENTAL RESULTS &DISCUSSION
	V. CONCLUSION
	REFERENCES
	AUTHOR PROFILE

