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Abstract—A robust reagents prediction is able to support the service improvement in laboratories. In 
this paper, Radial Basis Function Networks (RBFN) method with (3, Q, 1) architecture is used to predict 
two types of reagents needs, i.e. SD Bioline HBsAg and SD Bioline Anti HCV. Data of reagents from 2012 
- 2013 are used as training data, whereas 2014 data are used as comparative data for the prediction 
result. In RBFN training, the best condition obtained when the spread value is 4 with RMSE 1.63E-06 for 
both types of reagents. The prediction results with RBFN methods reached 99% with correlation value of 
0.99 for each reagents. RBFN method shows better prediction result compared to BPNN method with 
prediction of 92%. 
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I. INTRODUCTION 

A laboratory installation is one operational support unit in hospital with the duty and responsibility in patient's 
illness examination as well as one of the service unit that can be developed into a costs center and revenues for 
the hospital. The problems are often occurred in a laboratory installation is a use of budget for the reagents 
purchasing. It is happen due to the lack of knowledge of the laboratory personnel to analyzing budget needs so 
the number of reservations is mismatched with the actual reagents needed at the laboratory. By using empirical 
data at the hospital, these prediction errors can actually be overcome by using appropriate artificial intelligence 
methods with the data condition to be predicted. 

In several existing research, wide variety of theories and methods for the needs logistics prediction in hospital 
or the prediction of reagents needs have been carried out. Cao et. al. studied the hospital logistics stock demands 
forecasting based on data mining and back propagation neural network. The result accuracy of this research is 
87% [1]. In addition, Wen et al. examined the model of hospital engineering logistics management with JIT 
theory aimed at ensuring the logistics operations can run normally and reduce excessive operational costs 
[2]. While research on the prediction of reagents needs have been described as Decision Support System mas 
main tools [3-5]. Anon et al. doing research on decision-making model development for reagents forecasting 
with Analysis Hierarchy Process (AHP) method, Goal Programming (GP), Time Series Analysis (TSA) and 
Expert Systems (ES). The results of this study showed that the ES method provide better results than other 
methods with an average MSE of 3.75 [3]. Furthermore, Tzu et al. examines the decision-making management 
for reagents purchase with exponential smoothing method. This study obtained different results for each type of 
reagents with each correlation values for reagents plateau type is 0.3-0.5 and the increment type and decrement 
reagents type correlation value is 0.5-0.7 [4]. 

 Baizul et.al also made safety stock reagents prediction with Back Propagation Neural Network (BPNN), 
where the accuracy level of the prediction results reached 92% [5]. It is proven that shifting error learning from 
back propagation to radial basis function will increase accuracy of system not only on data series but also for 
multimedia matrices [6,7]. Based on the prediction results in previous studies, the accuracy level of predicted 
results still need to be improved. Therefore, Radial Basis Function Network (RBFN) method is used in this 
study to optimize prediction accuracy rate. 
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II. LITERATURE REVIEW 

A. Radial Basis Function Network 

Radial Basis Function Network (RBFN) is an artificial neural network model which transform input non-
linearly using radial basis activation function similar to the Gaussian activation function in hidden layer unit 
before linearly processed on the output layer. RBFN consists of three layers, i.e. input layer, hidden 
layer and output layer. Each hidden layer represents activation function in the form of radial 
basis function. Each input of its network will enable all the activation function on hidden layer. Each unit 
on hidden layer is called basis functions. Hidden layer consists of a number of similar basis functions that will 
generate an output with certain weight. The output of this network is the sum of all basis functions output 
multiplied by its weight [6].  
B.  Proposed RBFN Architecture 

In this paper, RBFN architecture have three input layer, hidden layer contain neurons as much as the data 
input and one output layer that uses only one neuron (3, Q, 1) that is shown in Fig. 1. Each input activates each 
function base on its own network. For example, input x1 will activate basis function on the first RBFN network, 
subsequently basis functions φ11, φ12 and φ13 be activated. Furthermore, cross-correlation between each basis 
functions on each network is calculated and the results are weighted wij. RBFN network output is calculated by 
the following equation [6].                  
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Where w0 is bias weight,  φij  is the activation basis function which is defined by Gaussian function as follows.  
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with cj is the jth gaussian functions center, σj is the jth gaussian function width and x is the basis function input.  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Proposed RBFN Architectural Design for Reagents Input 
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III.    METHODOLOGY 

A. Preprocessing 

Data reagents in this paper are collected from the laboratory unit of the teaching hospital for 3 years, from 
2012 to 2014. These data consists of three variables, i.e. reagents consumption, reagents demand and residual 
reagents. The data from 2012 to 2013 is used as training data while the data in 2014 is used validation data. At 
the initial stage, the data is normalized before the training process by using the following equation.  

babxx −−= /)('           (3) 

where x' is the normalized data, x is the input data, a represent the largest data value and b is the smallest data 
value. 
B. Training Process 

 Training process consists of five steps, i.e entering the input variables, normalizing the data, initializing 
network, setting the spread value and calculating the error value. Spread value setting is performed to optimize 
network activation function. The training process will stop if the error value < 0.00001.  The network training 
process of RBFN is shown in Fig. 2. 

 
Fig 2. The network training of RBFN 

C. Postprocessing 

At this stage, the training output will be denormalized with the following equation. 
bbayp +−= )('           (4) 

where p' is the denormalized data, y is the output of the training, b is the smallest data and a is the largest data. 
D. Process Validation and Prediction 

 Validation process are carried out in several stages, such as inserting test data of year 2014 that consists of 
three variable parameters (residual reagents data, reagents consumption data, reagents demand data), data 
normalization process to obtain data interval from 0 to 1, input the best network (net) from RBFN training 
result, conducting process of  reagents needs prediction for 2014, perform data denormalization to restore the 
data to the actual value and calculate correlation between the prediction results and the actual laboratory 
reagents. 

Several steps being taken in the validation process are entering test data in 2014, normalizing data, 
input the best net value of the training results, conducting process of reagents needs prediction for 2014, 
denormalized data and calculate the correlation of the prediction results and the actual data. 
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IV. RESULTS AND DISCUSSION 

A. Result Training Network 

In this paper, the best training results are based on the smallest RMSE values that influenced by the spread 
value. The network training results are shown in Table I. 

TABLE I.   Network Training of RBFN with adjustment spread value 

No 
Spread 
Value 

RMSE Value  

SD Bioline 
Reagents 
HbsAg 

SD Bioline 
Reagents  
Anti HCV 

1 2 3.25E-06 2.31E-06 
2 4 1.63E-06 1.63E-06 

3 6 9.62E-06 2.82E-06 
4 8 6.71E-06 4.31E-06 

5 10 3.64E-05 3.98E-06 

6 12 2.60E-05 1.29E-05 
7 14 1.05E-04 1.08E-05 

8 16 7.87E-05 1.21E-05 

9 18 6.17E-05 1.28E-04 
10 20 5.25E-05 1.04E-04 
11 22 1.83E-04 1.02E-04 

12 24 1.55E-04 8.78E-05 
13 26 1.35E-04 7.50E-05 
14 28 1.14E-04 6.20E-05 

15 30 1.01E-04 5.49E-05 
16 32 8.96E-05 5.27E-05 
17 34 8.01E-05 6.73E-05 

18 36 7.60E-05 6.06E-05 
19 38 7.45E-05 1.86E-04 
20 40 8.13E-05 1.63E-04 

 The best RBFN network training results achieved when the spread value is 4 with RMSE value of 1.63E-06 
for both reagents. The RMSE value on training calculated by the following equation [7]. 
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where yt is the actual data, N is the data amount,  yt’ is the prediction data,  ymax is the maximum value of the 
actual data and y min is minimum value of the actual data.  
B. Prediction Results Comparison Between RBFN and BPNN Methods 

The predicted results accuracy of RBFN method in this paper in the form of a correlation value compared 
with the predicted results of BPNN is discussed in Ref. [1] as shown in Table II. 
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TABLE II.  Comparison of Results Prediction Method RBFN with BPNN 

Mt 
SD Bioline HBsAg SD Bioline Anti HCV 

Actual RBFN BPNN Actual 
RBF

N 
BPNN 

1 260 260 267 180 180 157 
2 670 670 561 100 100 61 
3 200 200 182 180 180 193 
4 260 260 239 260 260 282 
5 200 200 190 100 100 111 
6 300 300 273 310 310 348 
7 350 350 352 250 250 256 
8 430 430 496 380 380 365 
9 450 450 369 350 350 361 

10 150 150 151 300 300 343 
11 300 300 276 250 250 347 
12 600 600 550 500 500 367 
Crl  0.99 0.96  0.99 0.88 

Act=Actual, Mt=Target of Month, Crl=Correlation 
In Table II, both reagents show the same correlations values of 0.99 for RBFN prediction method. Based on 

the correlation values in Table 2, it can be said that the results of prediction methods RBFN better than BPNN 
method. To calculate the correlation value prediction results above used the following equation [8]: 
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 Where n  is the number of data couple x and y, Σx is the total amount of x, Σy is the total amount of y, Σx 2 is 
the square from the total number of x,  Σy2 is the square of the total number of y  and Σxy  is the result of the 
total number of variables x and y variables multiplication.  

As for predictions result comparison graph between RBFN with BPNN method is shown in Fig. 3 and Fig. 4. 
The results show that the RBFN prediction is more accurate than that of BPNN. 

 
Fig 3. Comparison of Results Prediction Methods RBFN and BPNN For SD Bioline HBsAg Reagents 
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Fig 4. Comparison of Results Prediction Methods RBFN and BPNN For SD Bioline Anti HCV Reagents 

Fig. 3 and Fig. 4 shows the results predicted by the RBFN method is quite accurate and shadowing the 
reagents consumption pattern appropriate with the actual data. The red graph shows the RBFN method 
prediction, green is BPNN methods prediction and blue is the actual reagents usage data. 

V. CONCLUSION 

Prediction of reagents SD Bioline HBsAg and SD Bioline Anti-HCV using Radial Basis Function Network 
(RBFN) method has been studied in this paper. With RBF Architecture method (3, Q, 1) and spread value of 4, 
the prediction results profound the the correlation of 0.99 and 99% accuracy rate for both types of reagents. 
Based on the results prediction accuracy, RBFN method shows better results than BPNN method with the 
prediction results of 92%. 
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