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Abstract—Many scientific applications running in Cloud Computing system are workflow applications 
that contains large number of tasks and in which tasks are connected by precedence relations. Efficient 
scheduling the workflow tasks become a challenging issue in Cloud Computing environments because the 
scheduling decides performance of the applications. Unfortunately, finding the optimal scheduling is 
known as NP-hard. Ant Colony Optimization algorithm can be applied to design efficient scheduling 
algorithms. Previous scheduling algorithms that use Ant Colony mechanism lack rapid adaptivity. This 
paper proposes a task scheduling algorithm that uses a modified Ant Colony Optimization. The modified 
version uses probability in order for ants to decide target machine. The proposed task scheduling 
algorithm is implemented in WorkflowSim in order to measure performance. The experimental results 
show that the proposed scheduling algorithm reduce average makespan to about 6.4% compared to a 
scheduling algorithm that uses basic Ant Colony Optimization scheme. 

Keyword-task scheduling, dynamic load balancing, Ant Colony Optimization, WorkflowSim, Pegasus 
workflows 

I. INTRODUCTION 

Scientific computing includes a huge number of fields such as biology, chemistry, physics, finance, 
geophysics, mathematics and mechanics. These sciences use applications that usually distributed, thus the 
applications may execute faster than sequential ones. It is significant in some fields including weather 
forecasting or financial modeling to get results as fast as possible [1]. Scientific applications usually may 
produce many workflow tasks. A workflow is a set of tasks which is dependent to each other. In general, a 
workflow can be represent as a Direct Acyclic Graph (DAG). Fig.1 shows an example of DAG. 

Workflow scheduling is a mapping the tasks in DAGs to resources based on scheduling algorithms [2]. The 
goal of workflows scheduling in Cloud computing is to achieve a mapping that has shortest makespan. 
Makespan is the time difference between the first tasks start time and the last tasks finish time. Minimizing the 
makespan affects performance of the Cloud computing system. Fig. 2 shows an example of workflow 
scheduling to two Clouds. Cost is a significant factor in scheduling of cloud computing because of ultra large 
scale and pay-per-use business model. Market driven cloud users and providers can have mutual benefits from 
an efficient scheduling system. 

Since cloud services require great amount of control and manage resources, a good workflow scheduling in 
important to manage jobs and tasks. Workflow scheduling plays a key role in the workflow management system.  
After submitting workflow by a client, a broker or scheduler is used to run the scheduling algorithm so that the 
system can start to make decision. In cloud-based infrastructure, the physical machines are virtualized into 
unified resources called virtual machines (VMs). The scheduler decides which VMs will be used, as well as 
which tasks will be executed on each of these resources. It allocates workflow tasks to suitable virtual machine 
so that the process of computation can be executed to satisfy QoS constraints specified by users such as deadline 
and cost. This QoS-based optimization aims to minimizing execution cost or make execution time as short as 
possible and a specified budget [3]. 
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Fig. 2. An example of  DAG 

 

Since task scheduling complicated process, precedence between the tasks is done scheduling more difficult. 
In this paper we compare our proposed Probabilistic Load-balancing Ant Colony (PLAC) algorithm with Min-
Min and basic ACO. Min-Min choose small tasks first, as result large tasks stay in a long time queue list which 
is highly influence makespan of total tasks. Even through ACO shows better performance than Min-Min 
algorithm, it does not consider balancing the loads between VMs. So it is added load balancing factor for 
balance VMs load and reduce the average makespan. In order to do that it is utilized execution times of 
successfully finished tasks and number of tasks in a queue. Based on execution times of finished tasks and 
number of waiting tasks we proposed Expected Execution Time (EET) of tasks as a load measurement of 
resource. 

The rest of this paper is organized as follows: Chapter 2 is dedicated to related works. Proposed task 
scheduling algorithm is described in Chapter 3. Chapter 4 is dedicated to experimental results. As such 
experimental settings are introduced and performance results of algorithms are analyzed. Finally, in Chapter 5 
we conclude our paper and introduce some future work in Chapter 5. 

II. RELATED WORKS 

First Come First Serve (FCFS) algorithm is usually considered for parallel processing. It selects the 
resources with the smallest waiting queue for the incoming tasks. The disadvantage of FCFS is that it is non-
preemptive. In non-primitive scheduling process is automatically queued and processing occurs according to 
process order. The shortest tasks which are at the back of the queue have to wait for the long task at the front to 
finish. Its turnaround and response time quite low [4]. 

Min-Min algorithm chooses the task with the smallest length (Million Instruction) from the list. After that, 
the task will be assigned to resource which has minimum expected completion time. Drawback of the algorithm 
is that it chooses small tasks to be executed firstly, which in turn large task delays for long time [5]. 

Max-Min algorithm is very similar to Min-Min, but it chooses the task with the largest length and it assigns it 
to resource that has minimum expected completion time. Drawback of the algorithm is that it chooses large 
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tasks to be executed firstly, which in turn small task delays for long time [6]. 
Priority scheduling algorithm considers the priority of jobs for scheduling. It is based on multiple criteria 

decision making model. The list of the jobs is sorted based on priority. The task with highest priority is chosen 
and it assigns it to resource that has minimum expected completion time. Drawback of the algorithm low-
priority processes may wait long time [7]. 

Ant colony optimization (ACO) algorithm introduced by Dorigo based on the behavior of real ants [8], it is a 
heuristic algorithm for the solution of combinatorial optimization problems. The basic idea of ACO is to 
simulate the foraging behavior of ant colonies. When a group of ants go to search food source from the nest, 
they communicate with special kind of chemical called pheromone. Once the ants discover a path to food, they 
deposit pheromone on the path. By sensing pheromone on the ground, an ant can follow the trails of the other 
ants to the food source. As this process continues, most of the ants tend to choose the shortest path which has 
huge amount pheromone on this path. This collective pheromone-depositing and pheromone-following behavior 
of ants becomes the inspiring source of ACO. 

At time zero, ants are positioned on different towns, the initial values τij(0) for trail intensity are set on edge 
(i, j). The first element of each ant’s tabu list is set to be equal to its starting town [9]. Thereafter the k-ant 
moves from town i to town j with a probability that is defined as: 
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where allowedk = {N} - {tabuk}, tabuk is the tabu list of kth ant, τij(t) is the pheromone value on edge (i, j), ηij is 
the value of the heuristic value, and ηij(t) = 1/dij. Where dij is the distance between node ni and node nj. α, β are 
two parameters that control the relative weight of the pheromone trail and heuristic value. Finally the most 
optimal and effective path is selected and globally updated [10, 11]. Although ACO algorithm is suitable when 
input workflow is not stereotype, it does not consider load state in VMs. 

Load Balancing Ant Colony Optimization (LBACO) algorithm is proposed by Li et al. [12]. LBACO 
algorithm adds balancing factor to compute probability of each VM as follows: 
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where τj(t) is the pheromone of VMj, CCj is the computing capacity of VMj, LBj is the load balancing factor of 
VMj, α, β, γ are three parameters that control relative weights of components, and n is the number of VMs in the 
system. LBACO decides the load balancing factor based on differences between entire task load and the task 
loads of the previous iteration duration. Since the decision of load state depends on the relative loads against 
entire load history, it could lead to stubborn and not adaptive scheduling. Also LBACO does not consider 
workflow model. 

III.   PROPOSED SCHEDULING ALGORITHM 

A. System model 

This paper propose Probabilistic Load-balancing Ant Colony (PLAC) algorithm used by a broker. The 
broker receives requests from users as shown in Fig. 3. A request can be constructed with multiple tasks in the 
form of workflow. The broker selects a ready task among arrived workflow tasks. The ready task means that the 
task can execute immediately because all parent tasks of the task are completed. The broker asks to PLAC 
algorithm in order to select suitable VM. PLAC algorithm selects the target VM using ants and pheromones. 
The broker forwards the task to the selected VM. If the broker receives completed task from a host, it returns the 
task to its owner and informs to PLAC algorithm. PLAC algorithm updates values in its data structure including 
expected execution time of a VM.  
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Fig. 3. The system model 

In order to schedule a task proposed by the broker, PLAC algorithm let each ant select a target VM. An ant 
computes expected execution time of the task in each VM. Expected makespan of a VM can be calculated by 
adding the expected execution time of the task to the VM. Using the makespans, computing powers of VMs, and 
pheromones, the probability of each VM is computed. The sum of the probabilities of all VMs is 1.0. Each ant 
randomly votes a VM based on the probabilities. PLAC algorithm selects a VM that has the highest poll by the 
rule of ‘decision by majority’. Thus the number of ants should be greater than the number of VMs. Since a VM 
that does not have the shortest makespan can be selected, there is a chance to escape from local optima. 
B. Process of PLAC algorithm 

PLAC algorithm is composed of an initialization step and repeated two steps: choosing target VM step and 
updating pheromone step. In the initialization step, computing capacity CCj of VMj is calculated based on 
formula (3). 

jjjj bwvmmipspenumpeCC ___ +⋅= ,                                       (3) 

where pe_numj is the number of processing elements in VMj, pe_mipsj is the MIPS (Million Instructions Per 
Second) of each processing elements in VMj, and vm_bwj is communication bandwidth ability of VMj. Next, 
pheromone τj(0) of VMj at time 0 is initialized to CCj as formula (4). 

jj CC=)0(τ       (4) 

The values are shared by all ants.  
In the choosing target VM step, each ant computes values for decision. Given task ni, expected computation 

time ETj(i) in VMj is calculated using formula (5). 
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where task_lengthi is the length of task ni. Each ant computes the time for all VMs. For VMj, expected execution 
time EETj(t) of VMj at time t is calculated using formula (6). 
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where Rj(t) is the remained process time of current running task in VMj as shown in Fig. 4. Rj(t) is an expected 
time computed from submitted time, the current time, and execution of task running in VMj currently. Broker 
maintains queues for VMs and expects currently running task based on feedbacks of finished tasks. 
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Fig. 4. Remained process time 

Load balancing factor LBj(t) of VMj at time t is calculated using formula (7). The load balancing factor is the 
ratio of entire loads in the system over loads in VMj. The high value of the load balancing factor means that the 
VM is lightly loaded compared to other VMs.  
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Probability Pk
j(t) of choosing VMj by ant Antk at time t is calculated using formula (8).  
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where α, β, γ are variable parameters which control influence of pheromone value, computing capacity, and load 
balancing factor, respectively.  

After calculating all probabilities of VMs, each ant selects a VM based on the probability values. VM with 
the highest probability means that it has more chance to be selected. Although a VM has the lowest probability, 
it can be selected in order to escape from local optima. All ants vote their target VM and a VM that has the 
highest poll is selected as the final target for the task. 

Updating pheromone step changes pheromone value based on decided target VM as follows: 
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C. Example of LBACO algorithm 

Let us show an example of the proposed PLAC algorithm. Assume that there are 3 VMs (VM1, VM2, and 
VM3), 10 tasks (n1, n2… n10), and 4 ants (Ant1, Ant2, Ant3, and Ant4). Let’s assume that all VMs have 100 MIPS 
computing power, the size of each task is 1000 Million Instructions (MIs), network bandwidth is 1000 
Instructions per second, and parameters are follows: α = 3, β = 2, γ = 8, ρ = 0.01. Computing capacities of VMs 
are calculated in the initialization step using formula (3) as follows: 

CC1 = 1 · 100 + 1000; CC2 = 1100; CC3 = 1100. 
Initial pheromones of all VMs are initialized as follows according to formula (4): 
  τ1(0) = CC1 = 1100; τ2(0) = 1100; τ3(0) = 1100. 
Every ant chooses a VM for the next task according to formula (5) - (7). In the case of the first task n1, from 
formula (5),  

ET1(n1) = 100 / (1 · 1000) + 0 = 0.1;  ET2(n1) = 0.1; ET3(n1) = 0.1. 
Since there is no task in queue of VMs at the initial time, EET(j) = ETj(n1). Thus using formula (6) – (8) 

EET(1) = ET1(n1);  EET(2) = ET2(n1); EET(3) = ET3(n1); 
LB1(0) = (0.1 + 0.1 + 0.1) / 0.1 = 3;    LB1(0) = (0.1 + 0.1 + 0.1) / 0.1 = 3;    LB1(0) = (0.1 + 0.1 + 0.1) / 0.1 = 

3; 
P1

1(0) = 11003 · 11002 · 38 / (11003 · 11002 · 38 + 11003 · 11002 · 38 + 11003 · 11002 · 38) = 1/3;  
P2

1(0) = 1/3;   P3
1(0) = 1/3 

Since probabilities are the same for three VMs, Ant1 choose target VM randomly. Assume that Ant1 chooses 
VM1. Similarly other 3 ants decide target VMs in order to decide final target for task n1. Ant2 has the same 
probability values P1

2(0), P2
2(0), and P3

2(0), to decide a target as 1/3. Ant2 is assumed to select VM2, Likewise 
Ant3 and Ant4 has the same probability values. Ant3 and Ant4 are assumed to select VM3 and VM4, respectively. 
By the rule of ‘decision by majority’, VM1 is selected as the target of task n1. After assigning task n1 to VM1, 
local pheromones are updated according to formula (8). Since the shortest makespan T(0) is 100 / 1000 = 0.1, 
∆τ(t) is 1 / 0.1 or 10. Thus  

Remained process time Rj(t) 

Finished tasks Waiting tasks 
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τ1(1) = 1100 · (1 – 0.01) + 1 / 0.1 = 1099;   τ2(1) = 1100 · (1 – 0.01) = 1089;   τ3(1) = 1089. 
In the case of the 2nd task n2: 

ET1(n2) = 100 / 1000 + 0 = 0.1;   ET2(n2) = 100 / 1000 + 0 = 0.1;   ET3(n2) = 0.1; 
EET(1) = 0.1 + 0.1 = 0.2;   EET(2) = 0.1;   EET(3) = 0.1; 

LB1(1) = (0.1 + 0.1 + 0.2) / 0.2 = 2;   LB2(1) = (0.1 + 0.1 + 0.2) / 0.1 = 4;   LB3(1) = (0.1 + 0.1 + 0.2) / 0.1 = 4;    
P1

1(1) = 10993 · 11002 · 28 / (10993 · 11002 · 28 + 10893 · 11002 · 48 + 10893 · 11002 · 48) = 0.002; 
P2

1(1) = 10893 · 11002 · 48 / (10993 · 11002 · 28 + 10893 · 11002 · 48 + 10893 · 11002 · 48) = 0.499; 
  P3

1(1) = 0.499; 
Assume that Ant1 chooses VM2 for task n2. Since values to decide targets are the same for Ant2, Ant3, and 

Ant4, it is assumed that Ant2, Ant3, and Ant4 select VM3, VM2, and VM2, respectively. So, by the rule of ‘decision 
by majority’, VM2 is selected. Next, local pheromone is updated according to formula (9). 

τ1(1) = 1099 · (1 – 0.01) = 1088.01; 
τ2(1) = 1089 · (1 – 0.01) + 10 = 1088.11; 
τ3(1) = 1089 · (1 – 0.01) = 1078.11; 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In order to measure performance of the proposed PLAC algorithm, Min-Min, ACO, and PLAC algorithms 
are implemented in WorkflowSim [13], an extension of CloudSim [14] toolkit. The CloudSim toolkit is a java 
programming based discrete event Cloud simulation toolkit. It is built on the top of GridSim [15] simulation 
toolkit, which provides simulation of large scale cloud computing environments, service brokers, provisioning, 
allocation policies, and so on. Unfortunately, CloudSim is lack of support for schedule the scientific workflows. 
WorkflowSim adds functionalities in order to support simulation of scientific Workflows. WorkflowSim can use 
scientific workflows generated by Pegasus workflow management system [1]. The workflow characteristics are 
taken from diverse workflows domain such as biology, astronomy, earthquake science, and gravitational physics 
in order to resemble real workflows. 
A.  Simulation parameters 

The characteristics of resource used in the experiment are given in TABLE I. There is one datacenter and 25 
hosts in it. Each host has several VMs based on their power. CPU scheduling in a resource is modeled as space-
shared. 

TABLE I.  Characteristics of resources 

Datacenter 

Number of Datacenter 1 
Number of hosts 25 

VM (Virtual Machine) 

Number of VMs 100 
MIPS of PE per VM 1000-3000 MIPS 

VM memory 512 
Bandwidth 1000 

Type of manager Space shared 

TABLE II shows characteristics of tasks. Montage workflow which is generated by Pegasus Workflow 
Management System. It has 100 tasks with precedence relations.  

TABLE II.  Characteristics of tasks 

workflows type Montage_100 

number of PE requirement 1 
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TABLE III illustrates scheduling parameters which is used in simulation. 
TABLE III.  Scheduling parameters 

Number of workflows 5-50 
Number of ants in colony 8 

Iteration number 50 
α 3 
β 2 
γ 8 
ρ 0.01 

B. Simulation Results 

Fig. 6 and Fig. 7 show comparison result of three algorithms on average makespan and minimum makespan 
respectively. It can be seen that our proposed algorithm shows clearly better performance than other two when 
have used more than 20 Montage_100 workflows (which consist of 100 tasks with precedence). 

 
Fig. 6. Average makespan of Montage_100 workflows 

 
Fig. 7. Minimum makespan Montage_100 workflows 

In addition, we tried to compare performance of three algorithms with workflows where each workflow 
contains only includes one task, in order to prove that our algorithm shows better performance even using 
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primitive tasks. Fig. 8 and Fig. 9 show comparison using average makespan and minimum makespan, between 
Min-Min, ACO, and PLAC. ACO and PLAC algorithms show better performance than Min-Min algorithm.  

 
Fig. 8. Average makespan of 1000 workflows 

 
Fig. 9. Minimum makespan of 1000 workflows 

Fig. 10 and Fig. 11 compare algorithms with varied type of Pegasus workflows (Montage_100, CyberShake, 
Epigenomics_100, Inspiral_100, Sipht_100). In the varied workflows, LBACO shows better performance than 
other two. When Montage_100 workflows are applied, average makespan of PLAC ranges 79.9% ~ 101.0% 
against that of Min-Min algorithm and 89.9% ~ 100.5% against that of ACO algorithm, respectively. In the case 
of 1000 workflows where each workflow consists of one task, average makespan of PLAC ranges 42.4% ~ 
58.2% against that of Min-Min algorithm and 82% ~ 98% against that of ACO algorithm. 
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Fig. 10. Average makespan of varied Pegasus workflows 

 
Fig. 11. Minimum makespan of varied Pegasus workflows. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, PLAC algorithm is proposed. PLAC algorithm decides target VM considering balancing 
factors of VMs, manipulates feedback from VMs for maintaining exact queue length in each VM, and uses 
probabilistic choice and ‘decision by majority’ in order to escape from local optima. Experiments show 
comparison results of Min-Min, ACO, and PLAC algorithms using the various workflows. From Montage_100 
workflows, 1000 independent tasks, and varied Pegasus workflows, our proposed PLAC algorithm shows better 
performance than Min-Min and ACO algorithms about 11.5% and 6.4% respectively in overall. 

In this paper, we did not consider resource failure or task failure. Also, task clustering is not considered. As a 
future work we are going to expend our research by including fault tolerance features of Cloud Computing 
environments and considering task clustering like horizontal or vertical way. 
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