
Incremental Generation and Prioritization
of t-way Strategy for Web Based

Application

Mrs. B. Vani#1 Dr. R. Deepalakshmi#2

#1 PG Scholar, Department of CSE, Velammal College of Engineering and Technology,
Madurai, Tamil Nadu, INDIA

vani.sarguru@gmail.com
#2 Professor, Department of CSE, Velammal College of Engineering and Technology,

Madurai, Tamil Nadu, INDIA
jei.deepa@gmail.com

Abstract - The adoption of t-way strategies termed as interaction testing for combinatorial testing is the
main focus of this paper. Earlier work focus only on pairwise testing and the interaction coverage
achieved is also not hundred percent. This paper discusses the different t-way strategies of uniform
strength, variable strength, cumulative variable strength interactions for the test suite generation and
prioritization for the web based application. The paper highlights the t-way strategy implementation by
two different algorithms one for the minimal test suite generation and other for test suite prioritization
with the step-by-step example with experimental results and analysis.
Keywords - software testing, interaction testing, t-way strategy, combinatorial testing

I. INTRODUCTION

Combinatorial testing [1, 2] creates tests by selecting values for input parameters and by combining these
values. For a system with k parameters, each of which has v values, the number of possible combinations of
values of these parameters is vk. Owing to resource constraints it is nearly impractical to exhaustively test all
possible combinations [3, 4]. Thus a strategy is needed to select a subset of combinations to be tested. One such
strategy, called t-way testing[5], requires every combination of values of any t parameters covered by at least
one test, where t is referred to the strength of coverage and takes a small value. Each combination of values of a
set of parameters is considered to represent one possible interaction among these parameters. The rationale
behind t-way testing is not that every parameter contributes to every fault. The notion of t-way testing can
substantially reduce the number of tests. For example, a system of 20 parameters that have 10 values each
requires 1020 tests for exhaustive testing. It requires about 180 tests for 2-way in pairwise testing [6, 7].
Empirical studies have shown that t-way testing can effectively detect faults and generate better test suites in
various types of applications. The next requirement is to prioritize the generated minimal test suite providing
hundred percent of interaction coverage.

The paper is structured as follows. Section 2 gives the insight about the test suite generation and the
exhaustive combination strategies. Section 3 explains the idea behind the new construction t-way strategy.
Section 4 gives the details about the proposed algorithm for the test suite generation and the logic behind.
Section 5 provides the details for test suite prioritization. Section 6 gives the experimental results and analysis.
Section 7 draws our conclusive statements.

II. TEST SUITE GENERATION

Test suite generation for the web based banking application involves different parameters and settings.
Considering the t-tuples in the suite originating from poorly combined strategies the resulting test suite will then
be bigger than necessary.
A. TEST SUITE GENERATION THROUGH EXHAUSTIVE COMBINATIONS

Consider the running example of bank mortgaging application. There are 4 options or parameters with 2
settings each derived from the mathematical function f1 = (A,B,C,D) and f2 = f1(L1,L2). The Actual values of
the parameters and their settings along with the symbolic representation are given in the table.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 620

TABLE I
Parameters and Value Conversion

Actual Parameters and their values Symbolic Representation

Mort App = { Customer , Property } A = { a1, a2 }

Customer = { Income , CreditRating } B = { b1, b2 }

Property = { Type , Location } C = { c1, c2 }

Loan = { Term , Amount } D = { d1, d2 }

Test suite generation by exhaustive strategy requires 24 = 16 combinations for the above base data
values. The following table shows the exhaustive combinations of test suites.

TABLE II
Exhaustive Combinations

Base Values

Input Variables

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

All Combinatorial Values

a1 b1 c1 d1

a1 b1 c1 d2

a1 b1 c2 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c1 d2

a1 b2 c2 d1

a1 b2 c2 d2

a2 b1 c1 d1

a2 b1 c1 d2

a2 b1 c2 d1

a2 b1 c2 d2

a2 b2 c1 d1

a2 b2 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

III. TEST SUITE GENERATION THROUGH T-WAY STRATEGY

Combinatorial testing has raised from this tenet as a technique to sample, in a systematic way, some subset
of the input or configuration space. In combinatorial testing, the parameters and their settings are modeled as set
of factors or parameters and values; for each factor fi, a set of values are defined {x1, x2, … xj}, that partition the
factor space. From this model test suites[8, 9] or specific program configuration are generated by selecting a
subset of the Cartesian product of the values for all factors; an application with three factors and three settings
each has 3*3*3 = 27 combinations.

For the next level of interaction with three more settings have 27*27*27 = 19683 possible test suite
combinations for 2-way interaction. Considering the next level of interaction with three more settings the
number of combinations gets increased to (27*3)*(27*3)*(27*3) = 5,31,441 possible test suite combinations
that becomes very vast for exhaustive testing and pairwise testing. In order to reduce the test suite combinations
the t-way strategy finds a suitable approach for the complex web based banking application.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 621

A. OVERVIEW OF T-WAY STRATEGIES

The adoption of t-way strategies [10] termed as interaction testing for combinatorial testing of web based
application for test suite generation is the main focus. The main aim of any t-way strategy is to cover the
interaction tuples of interest in an optimal manner i.e. at most once whenever possible and hence systematically
minimizing the test suites for testing consideration.
B. TYPES OF T-WAY STRATEGIES FOR TEST SUITE GENERATION

• Uniform strength
• Variable strength

Uniform strength t-way interaction:

As highlighted earlier in survey, uniform strength interaction [11] forms the basis of interaction testing,
where all input parameters are assumed to be uniformly interacting (i.e. with constant interaction strength
throughout).
Variable Strength t-way interaction:

Unlike uniform strength interaction counterparts, variable strength interaction [12] considers more than
one interaction strength in the test suite generation process. Practically, a particular subset of input parameters
can have a higher interaction dependency than other parameters.

IV. CONSTRUCTION OF T-WAY TEST SUITES

The approach for the construction of a t-way covering test suite chosen in this work is based on the
assumption of the large input parameter interactions [13,14]. In this context instead of building the test suite by
either greedy or algorithmic approach we use incremental approach and the construction process is based on two
computational steps, namely the expansion and contraction stages.
Expansion Stage: build up t-way covering test suite T by enumerating all combinatorial requirements, one per
each row. As only t parameters are involved in each required combination, all others will be left unassigned.
Contraction Stage: search for the effective way to combine compatible rows together while preserving the
coverage, in order to reduce the total number of rows, i.e. the total number of requited test suites.
Two rows are said to be compatible if each corresponding position in the row is either assigned to the same
value or it has not been assigned don’t care values in at least one of the two rows [15,16]. The peculiarity of this
approach is that it builds up an intermediate test suite enumerating all t-way combinations for the parameters of
the application. The final test suite is derived from the intermediate one by finding the right way to effectively
merge together as many compatible rows as possible in order to reduce the total number of rows appearing in
the final test suite.

At beginning the intermediate test suite does not have as many compatible rows [17] that will have to be
merged. By giving the intermediate test suite the maximal redundancy that are a number of compatible rows that
could be merged together and the contraction stage removes the compatible rows and performs several merge
sequences in parallel to achieve the optimal test suite.
A. TEST SUITE GENERATION ALGORITHM

1
2
3
4
5
6*
7*
8
9
10
11
12*
13*
14*
15*
16*
17

reduceThread(TestSuite T) {
T1 = local copy of T ;
for each row r1 in T1 {
for each row r2 in T1-r1 {
if compatible (r1,r2) {
rotate = random Boolean ;
if (rotate) start new reduceThread(T1) ;
rem r2 in r1 ;
}
}
}
If (T1.size() <current_min) {
Discard Tmin ;
Tmin = t1 ;
}
else discard T1 ;
}

Fig 1. Multithreaded Rem Algorithm for Test Suite Generation

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 622

Algorithm Explanation:

The Original single threaded algorithm computes only one merge sequence. Parameter passed as the
input value to reduceThread is previously computed, redundant test suite. The Multithreaded rem algorithm
computes several possible merge sequences in parallel (marked by *). Algorithm reduceThread() searches for
rows that can be merged and hence removed. In order to ensure termination it proceeds merging compatible
rows with the incremental approach.

Each merge will add to test suite a completely new row. This added new row determines potential
change in compatibility relations. It is not possible to determine in advance if choice(merge(r1,r2)) was the best
possible until reduce Thread() is finished. In order to overcome this limitation before applying change to the
local copy of test suite a new thread is started i.e. given the current version of test suite.
The new thread will skip the change and search for alternative chance of merging. The instances of the
reduceThread are run in parallel. At termination, each thread will compare its resulting test suite with the one
currently minimal and stored in a repository. The replacements in the repository are done in case of
improvements.

The Speed up of multithreaded rem algorithm with respect to single thread execution is bound to number N
i.e. N merge sequences at the same time. A running threads counter is used to monitor the termination of the
whole process. Although the number of occurrences of thread will be two times the total number of thread
instances and it is controlled using the stochastic variable rotate.
B. TEST SUITE GENERATION BY UNIFORM STRENGTH t-WAY INTERACTION

Consider the interaction strength t=2 and t=3 and the tables below illustrate how the test suites are generated
for both and reduction is achieved.

For t=2 the interaction is broken down to AB, AC, AD, BC, BD, CD. The other two parameters in each of
the set considers don’t care values i.e. they both are not varied. Combining these results, note that there are some
repetitions for the entries and remove those repetitive entries.

Base Values

Input Variables

+

Base Values

Input Variables
A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

Combinatorial Values
For AB, t=2

a1 b1 c1 d1

Combinatorial Values
For AC, t=2

a1 b1 c1 d1

a1 b2 c2 d2 a1 b2 c2 d2

a2 b1 c1 d1 a2 b1 c1 d1

a2 b2 c2 d2 a2 b2 c2 d2

Base Values

Input Variables

+

Base Values

Input Variables
A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1

a2 b2 c2 d2 a2 b2 c2 d2

Combinatorial Values
For AD, t=2

a1 b1 c1 d1
Combinatorial Values
For BC, t=2

a1 b1 c1 d1

a1 b2 c2 d2 a1 b1 c2 d2

a2 b1 c1 d1 a2 b2 c1 d1

a2 b2 c2 d2 a2 b2 c2 d2

Base Values

Input Variables

+

Base Values

Input Variables
A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

Combinatorial Values
For BD, t=2

a1 b1 c1 d1
Combinatorial Values
For CD, t=2

a1 b1 c1 d1
a1 b1 c2 d2 a1 b2 c1 d2
a2 b2 c1 d1 a2 b1 c2 d1
a2 b2 c2 d2 a2 b2 c2 d2

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 623

On removing the repetitions the test suite generated is given in the following table.

= Removing Repetitions

Base Values

Input Variables
A B C D
a1 b1 c1 d1
a2 b2 c2 d2

Combinatorial Values
With t=2

a1 b1 c1 d1
a1 b2 c2 d2
a2 b1 c1 d1
a2 b2 c2 d2
a2 b1 c1 d1
a1 b1 c2 d2
a2 b2 c1 d1
a1 b2 c1 d2
a2 b1 c2 d1

Total Test Suites = 9
TABLE III

Uniform t-way Interaction Result (t=2)

For Interaction strength t=3 consider the test suite generation

Base Values

Input Variables

+

Base Values

Input Variables
A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

Combinatorial
Values for ABC,
t=3

a1 b1 c1 d1

Combinatorial
Values for ACD,
t=3

a1 b1 c1 d1
a1 b1 c2 d2 a1 b2 c2 d2
a1 b2 c1 d1 a1 b2 c1 d1
a1 b2 c2 d2 a1 b1 c2 d2
a2 b1 c1 d1 a2 b1 c1 d1
a2 b1 c2 d2 a2 b1 c2 d2
a2 b2 c1 d1 a2 b2 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

+

Base Values

Input Variables

+

Base Values

Input Variables
A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

Combinatorial
Values for ABD,
t=3

a1 b1 c1 d1

Combinatorial
Values for BCD,
t=3

a1 b1 c1 d1
a1 b1 c1 d2 a2 b1 c1 d2
a1 b2 c2 d1 a1 b1 c2 d1
a1 b2 c1 d2 a1 b1 c2 d2
a2 b1 c1 d1 a2 b2 c1 d1
a2 b1 c1 d2 a1 b2 c1 d2
a2 b2 c2 d1 a2 b2 c2 d1
a2 b2 c2 d2 a2 b2 c2 d2

For t=3 the interaction is broken down between parameters ABC, ABD, ACD and BCD. Here when the
parameters ABC are considered, the parameter D takes don’t care values. When the parameters ABD are
considered, the parameter C takes don’t care values. When the parameters ACD are considered, the parameter B
takes don’t care values. When the parameters BCD are considered, the parameter A takes don’t care values.
Combining these results, note that there are some repetitions for the entries and remove these repetitive entries.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 624

= Removing Repetitions

Base Values Input Variables
A B C D
a1 b1 c1 d1
a2 b2 c2 d2

Combinatorial Values with t=3 a1 b1 c1 d1
a1 b1 c2 d2
a1 b2 c1 d1
a1 b2 c2 d2
a2 b1 c1 d1
a2 b1 c2 d2
a2 b2 c1 d1
a2 b2 c2 d1
a1 b1 c1 d2
a1 b2 c2 d1
a1 b2 c1 d2
a2 b1 c1 d2
a2 b2 c2 d2

Total Test Suites = 13
TABLE IV

Uniform t-way Interaction Results (t=3)

C. TEST SUITE GENERATION BY VARIABLE STRENGTH t-WAY INTERACTION

Unlike uniform strength interaction counterparts, variable strength interaction considers more than one
interaction strength in the test suite generation process [18]. Practically, a particular subset of input parameters
can have a higher interaction dependency than other parameters (indicating failures due to the interaction of that
subset may have more significant impact to the overall system). For example, consider the bank mortgaging
application where the customers and the property interaction play a vital role.

Base
Values

Input Variable

+

Base Values Input Variable

=

Base Values Input Variable
A B C D A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2 a2 b2 c2 d2

Comb
Values
t=2

a1 b1 c1 d1 Variable
Strength Comb
Values BCD
t=3

a1 b1 c1 d1 Variable
strength
Comb
Values

a1 b1 c1 d1
a1 b2 c2 d2 a1 b1 c1 d2 a1 b2 c2 d2
a2 b1 c1 d1 a2 b1 c2 d1 a2 b1 c1 d1
a2 b2 c2 d2 a2 b1 c2 d2 a2 b2 c2 d2
a2 b1 c1 d1 a2 b2 c1 d1 a2 b1 c1 d1
a1 b1 c2 d2 a1 b2 c1 d2 a1 b1 c2 d2
a2 b2 c1 d1 a2 b2 c2 d1 a2 b2 c1 d1
a1 b2 c1 d2 a1 b2 c2 d2 a1 b2 c1 d2
a2 b1 c2 d1 a2 b1 c2 d1
 a1 b1 c1 d2
 a2 b1 c2 d2
 a2 b2 c1 d1
 a2 b2 c2 d1

Total Test Suite = 9 Total Test Suite = 8 Total Test Suite = 13
TABLE V

Variable Strength Interaction

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 625

To provide stronger coverage those parameters are considered with interaction strength t=3 and the
remaining parameters with interaction strength t=2 [19]. In this case, we can assign variable coverage strength to
each subset of parameters and to the whole application.

To illustrate variable strength t-way interaction assumes the bank mortgage application example.
Assume that all interaction is uniform at t=2 for all parameters. Then consider t=3 only for parameters B, C, D.
Combining both interactions the yield result is shown in the table below. Here, the test suite has been reduced
from 16 (for exhaustive case) to 13, a saving of 18.75 percent.
D. TEST SUITE GENERATION BY CUMULATIVE VARIABLE STRENGTH t-WAY INTERACTION

Base Values Input Variable + Base Values Input Variable = Base Values Input Variable
A B C D A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2 a2 b2 c2 d2

Comb Values a1 b1 c1 d1 Comb Values a1 b1 c1 d1 Comb Values a1 b1 c1 d1
a1 b2 c2 d2 a1 b1 c2 d2 a1 b1 c2 d2
a2 b1 c1 d1 a1 b2 c1 d1 a1 b2 c1 d1
a2 b2 c2 d2 a1 b2 c2 d2 a1 b2 c2 d2
a2 b1 c1 d1 a2 b1 c1 d1 a2 b1 c1 d1
a1 b1 c2 d2 a2 b1 c2 d2 a2 b1 c2 d2
a2 b2 c1 d1 a2 b2 c1 d1 a2 b2 c1 d1
a1 b2 c1 d2 a2 b2 c2 d1 a2 b2 c2 d1
a2 b1 c2 d1 a1 b1 c1 d2 a1 b1 c1 d2
 a1 b2 c2 d1 a1 b2 c2 d1
 a1 b2 c1 d2 a1 b2 c1 d2
 a2 b1 c1 d2 a2 b1 c1 d2
 a2 b2 c2 d2 a2 b2 c2 d2
 a2 b1 c2 d1

Total Test Suite = 9 Total Test Suite = 13 Total Test Suite =14
TABLE VI

Variable Strength Interaction (Cumulative t=2 and t=3) Results

As a special case of variable strength interaction, consider the cumulative strength t=3 and t=2.
Combining the test suite it yields the result as shown in the table above. Note that the test suite t=2 is not
necessarily the subset of test suite t=3. In this case the test suite has been reduced from 16 (for exhaustive case)
to 14 proving 100 percent coverage and a saving of 12.5 percent.

V. TEST SUITE PRIORITIZATION

Web Based applications routinely undergo changes as part of their maintenance process. New versions
of the applications are created as result of bug fixes or requirement modification. In such situation, a large
number of test suites may be available from testing previous versions of the application which are often reused
to test the new version of the application. However running such test suites may take a significant amount of
time. A tester needs to select and execute only a subset of those test suites. Here comes need for test suite
prioritization. Test suite prioritization is the process of scheduling the execution of test suites according to some
criterion in order to satisfy the goal. We have already generated the CIT test suite that is already smaller in size.
The next step is to prioritize the generated test suite in order to improve the likelihood that faults will be
detected early in the testing process [20].

Consider the function for test prioritization as formally defined. Given T, a test suite, Π, the set of all
test suites obtained by permuting the tests of T, and f, a function from Π to the set of real numbers, the problem
is to find π ∈ Π such that ∀ π’ ∈ Π, f(π) ≥ f(π’). In this definition, Π refers to the possible prioritizations of T
and f is a function that is applied to evaluate the orderings. The selection of the function f leads to many criteria
to prioritize software tests. For instance, the prioritization criteria may consider frequency of occurrence. The
applications that cover a smaller percentage of interactions in the test suites do not benefit from prioritization by
interaction [21,22]. The interaction based prioritization results in fastest fault detection rate [23, 24] by
providing hundred percent of interaction coverage using the metric APCC. The function order suite selects a test
suite that covers the maximum number of criteria elements not yet covered by already selected test suites. The
function iterates until all test suites have been ordered.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 626

The function Order Suite takes four parameters:
1) The suite to be ordered – note the set from the repository
2) A function f that takes a single test suite as input and return set of elements of interest to the criterion.
3) Another function F that operates on the sequence of test suites S.
4) An operation ⨁ assigns a fitness value to test suite.

Function Order Suite starts with an unordered sequence and involves BestTests until all the test suites have been
ordered.

1
2
3
4
5
6
7
8

Input Parameters
Suite : Test Suite to be prioritized
f: Function returns criteria elements of a single test suite
F: Function returns criteria elements in sequence of test suites ⨁ : Operation combines results of f and F.
Output:Priority ordered sequence containing all test suites.
Computation:
S ← EMPTY;
T ← Suite ;
Repeat
t ← BestTest(S,T,f,F,⨁);
S	← Insert at end (S,t);
T ←	T – t ;
Until (T ==	∅);
Ordered Sequence ← S;

Fig 2. Function – Order Suite

1
2
3
4
5
6
7
8
9
10

Input Parameters:
S : Priority ordered sequence of test suites selected
T : set of remaining test suites
f : Function returns criteria elements in single test
F : Function returns criteria element in sequence of test suites ⨁ : Operation combines results of f and F
Output: t= bestTest added to test suite
Computation:
Max ← Min Int ;
f(s) ← F(s) ; ∀ x ∈ T {
y ← f(x) ⨁ fs ;
if (max < y) || (max ==y) && (Rand() <= 0.5) {
max ← y ;
t ← x ;
}
}
Return(t) ;

Fig 3. Function – bestTest

A. TEST SUITE PRIORITIZATION ALGORITHM

The Proposed test suite prioritization algorithm keeps a more than one test suite that covers largest
number of currently uncovered t-tuples. In original algorithm ties being broken at random and the test suites
later in the list have higher chance of getting picked [25, 26]. i.e. instead of T0 – T12 is picked where T0 most
important. Consider the case when all n tests cover the same amount of uncovered t-tuples. The
CurrentMaximum is picked first. The probability of being picked = 0.5n, since at each tie breaking point it has to
win over the next test suite. In order to reduce the probability to 1/n the array denoted by # is added. The array
holds the test suites that covers same amount of interactions. Boolean mapping is kept from test suites to t-tuples
to mark currently uncovered t-tuples. These mappings are updated whenever a new test suite is marked. This
avoids constantly recalculating the number of uncovered t-tuples for each test suite that is generated.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 627

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

CA = test suite to prioritize
gather all valid t-tuples based on CA
mapping = []
order = []
for all tests in CA do
mapping[test] = [true if t-tuples(i) in test, else false]
order [test] = f(mapping[test])
end for
bestTest = a test function that covers the most unique t-tuples
bestTests = [bestTest]
add bestTest to TestSuite
selected TestCount = 1
while selected TestCount < size(CA) do
update order,mapping
remove order[bestTest], mapping[bestTest]
tCountMax = F(max(order))
bestTests = []
for all tests in order do
if order[test] == tCountMax then
add test to bestTests
end if
end for
bestTest = random test from bestTests
add bestTest to TestSuite
selected TestCount++
end while

Fig 4. Test Suite Prioritization Algorithm

B. TEST SUITE PRIORITIZATION FOR THE GENERATED MINIMAL TEST SUITE

Considering the generated test suite, prioritizing the test suite using the above algorithm the flow is
describing by the following figure. The parameter Customer and Income is considered along with the frequency
of occurrence then the order sequence is T0T1T8. Considering the next parameter Customer and Credit rating the
order sequence is T2T3T9T10.Considering the parameter Property and Income the order sequence is T4T5T11T13.
Considering the parameter Property and Credit rating the order sequence is T6T7T12. The ordered sequence is not
the complete prioritized order. The next parameter is considered for ordering that sequence. Then the ordered
sequence is T0T8T1 – T2T10T9T3 – T4T11T13T5 – T6T7T12. Then each of the sequence is added to bestTest and
finally added to the prioritized TestSuite. The final prioritized order of the test suite is T0, T8, T1, T2, T10, T9, T3, T4,
T11, T13, T5, T6, T7, T12.

Base Values Input Variables Test Suite Base Values Input Variables Prioritized
Order

A B C D A B C D
a1 b1 c1 d1 a1 b1 c1 d1
a2 b2 c2 d2 a2 b2 c2 d2

Comb Values a1 b1 c1 d1 T0 Comb Values a1 b1 c1 d1 T0
a1 b1 c2 d2 T1 a1 b1 c1 d2 T8
a1 b2 c1 d1 T2 a1 b1 c2 d2 T1
a1 b2 c2 d2 T3 a1 b2 c1 d1 T2
a2 b1 c1 d1 T4 a1 b2 c1 d2 T10
a2 b1 c2 d2 T5 a1 b2 c2 d1 T9
a2 b2 c1 d1 T6 a1 b2 c2 d2 T3
a2 b2 c2 d1 T7 a2 b1 c1 d1 T4
a1 b1 c1 d2 T8 a2 b1 c1 d2 T11
a1 b2 c2 d1 T9 a2 b1 c2 d1 T13
a1 b2 c1 d2 T10 a2 b1 c2 d2 T5
a2 b1 c1 d2 T11 a2 b2 c1 d1 T6
a2 b2 c2 d2 T12 a2 b2 c2 d1 T7
a2 b1 c2 d1 T13 a2 b2 c2 d2 T12

TABLE VII
Prioritized Test Suite with the order and Test Suite Number

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 628

C. INTERACTION COVERAGE METRIC

To calculate the t-way interaction coverage of a the given test suite we use the following formula. Rate
= coverage / number of all valid t-tuples * 100%, whereas coverage = number of t-way interaction. Rate = 14 /
14 * 100% = 100% for the generated test suite of the web based banking mortgage application. To compare how
quickly each prioritized test suite achieves the interaction coverage of specific strength the metric used is

Average Percentage Covering array Coverage – APCC. APCC = (1 −	෍ ቀେ୅୧୬୫ + ଵଶ௡ቁ௠௜) * 100, where m is the

number of covering arrays and n is the number of test suites in each CA. It takes 14 test suites to achieve 100%
coverage for both 3-way and pairwise interaction coverage i.e. 3-way and 2-way cumulative.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

The Experimental results have shown that for the interaction strength t=2 and t=3 using the incremental
generation algorithm the total number of test suites generated are 871 for the maximum domain size 10 that has
covered about 2,31,516 combinations of parameters and settings with the execution time of 0.219 seconds with
100% coverage. Similarly for the IPO algorithm and its variants the numbers of test suites generated are very
large for interaction strength t=2 and t=3. For t=2 the number of combinations is 6530 for the maximum domain
size of 10 and the number of test suites generated is 1,72,881 considering the don’t care values. The execution
time is also 249 seconds. For t=3 the number of combinations is 2,31,516 for the maximum domain size of 10
and the number of test suites generated is 1,73,637. The execution time is also 406 seconds. The coverage
achieved is also not 100%. From the above experimental results the incremental generation algorithm and
prioritization algorithm performs the best and achieves speed up and 100% interaction coverage. Thus the
incremental generation algorithm serves to be more efficient in terms of coverage and reduction of test suites.
Since the number of test suites is already minimal the prioritization also consumes only less time and 100%
coverage is achieved.

VII. CONCLUSION

The proposed technique for building the test suite of size t for the application under test focuses on the
ability to reduce the number of test suites, merging the redundant t-tuples. The algorithm has intrinsic benefits
over the traditional and greedy approaches. This algorithm is both mathematical and practical. It is surely able to
arrive to the minimal test suite with 100% coverage for the web based banking application. The test suite
prioritization algorithm uses the Boolean mapping to avoid recalculation of interaction benefit of the test suites
every time. The Prioritization also preserves 100% coverage of combinations and verified by the CCM tool
using the rate of coverage and APCC metric.

REFERENCES
[1] Nie, Changhai, and Hareton Leung. "A survey of combinatorial testing." ACM Computing Surveys (CSUR) 43.2 (2011): 11.
[2] Dumlu, Emine, et al. "Feedback driven adaptive combinatorial testing." Proceedings of the 2011 International Symposium on Software

Testing and Analysis. ACM, 2011.
[3] Groce, Alex, et al. "Establishing flight software reliability: testing, model checking, constraint-solving, monitoring and learning."

Annals of Mathematics and Artificial Intelligence 70.4 (2014): 315-349.
[4] Borazjany, Mehra N., et al. "An Input Space Modeling Methodology for Combinatorial Testing." Software Testing, Verification and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on. IEEE, 2013.
[5] Yu, Linbin, et al. "Acts: A combinatorial test generation tool." Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth

International Conference on. IEEE, 2013.
[6] Lopez-Herrejon, Roberto E., et al. "Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies

for pairwise testing of software product lines." Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE, 2014.
[7] Oster, Sebastian, Florian Markert, and Philipp Ritter. "Automated incremental pairwise testing of software product lines." Software

Product Lines: Going Beyond. Springer Berlin Heidelberg, 2010. 196-210.
[8] Fraser, Gordon, Andrea Arcuri, and Phil McMinn. "Test suite generation with memetic algorithms." Proceeding of the fifteenth annual

conference on Genetic and evolutionary computation conference. ACM, 2013.
[9] Anand, Saswat, et al. "An orchestrated survey of methodologies for automated software test case generation." Journal of Systems and

Software 86.8 (2013): 1978-2001.
[10] Al-Sewari, AbdulRahman A., and Kamal Z. Zamli. "An Orchestrated Survey on T-Way Test Case Generation Strategies Based on

Optimization Algorithms." The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Springer
Singapore, 2014.

[11] Yilmaz, Cemal, et al. "Moving forward with combinatorial interaction testing." (2013): 1-1.
[12] Abdullah, Syahrul AC, Zainal HC Soh, and Kamal Z. Zamli. "Variable-Strength Interaction for T-Way Test Generation Strategy."

International Journal of Advances in Soft Computing & Its Applications 5.3 (2013).
[13] Zhang, Zhiqiang, et al. "Generating combinatorial test suite using combinatorial optimization." Journal of Systems and Software

(2014).
[14] Petke, Justyna, et al. "Efficiency and early fault detection with lower and higher strength combinatorial interaction testing."

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 2013.
[15] Abad, Pablo, et al. "Improving test generation under rich contracts by tight bounds and incremental SAT solving." Software Testing,

Verification and Validation (ICST), 2013 IEEE Sixth International Conference on. IEEE, 2013.
[16] Anielak, Grzegorz, Grzegorz Jakacki, and Sławomir Lasota. "Incremental test case generation using bounded model checking: an

application to automatic rating." International Journal on Software Tools for Technology Transfer (2014): 1-11.

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 629

[17] Chaturvedi, Animesh, and Atul Gupta. "A tool supported approach to perform efficient regression testing of web services."
Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2013 IEEE 7th International Symposium on
the. IEEE, 2013.

[18] Wang, Ziyuan, and Haixiao He. "Generating Variable Strength Covering Array for Combinatorial Software Testing with Greedy
Strategy." Journal of Software 8.12 (2013): 3173-3181.

[19] Mayo, Quentin, Ryan Michaels, and Renee Bryce. "Test Suite Reduction by Combinatorial-Based Coverage of Event Sequences."
Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on. IEEE, 2014.

[20] Jacob, T. Prem, and T. Ravi. "A Novel Approach for Test Suite Prioritization using Clustering." Indian Journal of Advances in
Computer Sciences and Technology 1.1 (2013): 59-66.

[21] Huang, Rubing, et al. "Adaptive random prioritization for interaction test suites." Proceedings of the 29th Annual ACM Symposium on
Applied Computing. ACM, 2014.

[22] Huang, Rubing, et al. "Prioritizing Variable-Strength Covering Array." COMPSAC. 2013.
[23] Badhera, Usha, and Annu Maheshwari. "PERFORMANCE ANALYSIS OF PRIORITIZED TEST SUITES BASED ON FAULT

DETECTION." International Journal 3.4 (2014).
[24] Qu, Xiao, and Myra B. Cohen. "A study in prioritization for higher strength combinatorial testing." Software Testing, Verification and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on. IEEE, 2013.
[25] Huang, Rubing, et al. "Prioritization of combinatorial test cases by incremental interaction coverage." International Journal of Software

Engineering and Knowledge Engineering 23.10 (2013): 1427-1457.
[26] Huang, Rubing, et al. "Aggregate-Strength Interaction Test Suite Prioritization." Journal of Systems and Software (2014).

Mrs. B. Vani et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 630

	Incremental Generation and Prioritizationof t-way Strategy for Web BasedApplication
	Abstract
	Keywords
	I. INTRODUCTION
	II. TEST SUITE GENERATION
	III.TEST SUITE GENERATION THROUGH T-WAY STRATEGY
	IV. CONSTRUCTION OF T-WAY TEST SUITES
	V. TEST SUITE PRIORITIZATION
	VI. EXPERIMENTAL RESULTS AND ANALYSIS
	VII. CONCLUSION
	REFERENCES

