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Abstact. Bioinformatics and data mining require data analysis schemes. Many methods of analysis, such 
as those focusing on entropy, have been developed and assume that the input data has discrete values. 
Therefore, when using continuous data, discretization needs to be performed before analysis can begin. 
Many discretization algorithms have been proposed, and these discretize a given dataset attribute-by-
attribute. Although such methods assume that the attributes are independent from each other, in reality 
these attributes interact with and influence the results of the analysis as a group, not individually. In this 
paper we propose a post-processing method that can improve the quality of discretization. After the normal 
discretization process, we adjust the boundary point of the discretization for each attribute, and then after 
evaluating the group effect of the adjusted point, we update the original boundary point by adjusting it if it 
has a positive influence on the attribute. The results of the empirical experiments show that the adjusted 
dataset improves the classification accuracy. Proposed method can be used with any discretization 
algorithms, and improves their discretization power. 
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I. INTRODUCTION 

In the genomics age, high-throughput data techniques can produce an abundance of high-dimensional biomedical 
data. The analysis of such data presents significant analytical and computational challenges, and for this reason 
various data mining techniques have been developed [8]. Many types of data mining and bioinformatics tools require 
for data to be discretized and, for example, microarray data discretization is a basic pre-process for many algorithms 
that are used for gene regulatory network inference [16]. Major data analysis schemes – such as a t-test, a Bayesian 
network, mutual information, and symmetric uncertainty – are based on probability theory and on entropy theory, and 
they require discrete data as an input in order to calculate some probability or entropy value, which illustrates why 
discretization is required for continuous data.  

Dozens of discretization methods have been proposed since the early computer age, and Liu et al. [7] suggested that 
discretization methods could be grouped as follows: (1) supervised vs. unsupervised discretization, were 
classification depends on whether class information is used during discretizing; (2) local vs. global discretization, 
where a local method discretizes in a localized region of the instance space whereas a global method uses the entirety 
of the instance space; (3) top-down vs. bottom-up discretization, where top-down methods start with an empty list of 
cut-points (split-points) and new ones are added to the list by ‘splitting’ the intervals whereas bottom-up methods start 
with the complete list of all the continuous values as cut-points and gradually remove some of them by ‘merging’ the 
intervals.  

In this study, we consider supervised and top-down/bottom-up approaches because the supervised method is more 
efficient than an unsupervised one. Top-down or bottom-up methods generally contain the following steps [7]: 

(1) sort continuous data for discretization 
(2) select a candidate cut-point or adjacent intervals 
(3) invoke appropriate evaluation measures 
(4) if the evaluation value is satisfied, split or merge the intervals, else go to (2) 
(5) if a stopping criterion is satisfied, finish the discretization, else go to (2) 
The limitation of the supervised methods that were previously proposed is that they do not consider attribute 

interaction. Each attribute is discretized under a relationship with a class attribute, and other attributes have no 
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influence in any way. This means that previous supervised methods assume an independence between the attributes. 
In reality, however, attributes interact with each other in supervised learning [4, 5]. This interaction influences the 
performance of the classification accuracy, among other measures. Therefore, when we develop a discretization 
method, we need to consider the interactions between the attributes. 

In the context of a supervised prediction task, typically for classification, attribute interaction can be defined in the 
following manner [2]. Suppose there are three attributes C, X1, and X2 where C is the class attribute that is to be 
predicted, and X1 and X2 are predictor attributes. X1 and X2 interact when the prediction or magnitude of the 
relationship between C and X1 depend on the value of X2. We then call this a two-way interaction. Higher-order 
attribute interactions can therefore be defined in a similar way. Let us suppose acc(X, C) is the classification accuracy 
by attribute X onto class C. If acc({X1, X2 }, C) > max[acc(X1, C), acc(X2, C] ), then a positive interaction exists 
between X1 and X2 . If acc({X1, X2 }, C) < min[acc(X1, C) , acc(X2, C) ], then there is a negative interaction between 
X1 and X2.  

In this study we suggest a post-processing technique that can be used after discretization to reflect attribute 
interaction. Proposed method is not new discretization algorithm; it makes enhancement of given discretization 
algorithm. After discretization is finished using any algorithms, we adjust the cut-points considering the attribute 
interaction. In the result of the empirical experiments, we confirm that the adjusted dataset brings an improvement 
for classification accuracy.  

II. POST-PROCESSING METHOD FOR DISCRETIZATION 

In an ordinary discretization process, we use continuous values as an input of a given attribute, and then the 
discretization algorithm finds the proper cut-points that correspond to the evaluation criterion. Finally, the continuous 
values are converted into discrete values by using these cut-points (see Fig. 1). Every attribute is converted to discrete 
values in the same way. As we had previously mentioned, this approach does not consider the interaction between the 
attributes. Therefore, we could inject the effect of the interaction into the discretization algorithm, but this would be 
difficult and complex. Our strategy is to separate the discretization and to reflect the attribute interaction. The 
advantage of this approach is that we can separately develop a discretization method and then apply a method to take 
into account attribute interaction. 

 

Fig. 1. Ordinary discretization process 

Now, we describe the post-processing method that is used for the discretization method. Our basic idea is to adjust 
the cut-points, and to make a new discretization according to the adjusted points. We then re-evaluate the discretized 
dataset in a manner that takes into account the interaction of the attributes. If adjusting a cut-point brings an 
improvement in the evaluation of the value, we change the original cut-point to the adjusted cut-point and re-generate 
the discrete dataset. Let us then suppose that our method is given an original continuous dataset (CD), a discretized 
dataset (DD), and cut-points of all attribute for discretization (CUT-POINTS). The proposed post-processing method 
is as follows: 
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Fig. 2. Adjusting ranges (gray region) for cut-points 

(1) evaluate the relevance of each attribute in DD and of the class attribute  
(2) sort attributes in DD, CD, CUT_POINTS in descending order of relevance.  
(3) calculate the base performance criterion value, bp, using CD 
(4) take m% of best relevant attributes as a candidate for the adjusting process. (In our experiment, m = 10.) 
(5) take an attribute x from the candidate attributes 
(6) take a cut-point p of x and find the adjusting range 
(7) move p to p’ and re-discritize x according to p’ 
(8) calculate the new performance criterion value cp using the adjusted DD 
(9) if cp > bp change p = p’and bp = cp. Go to (6) 
(10) repeat steps 5–9 until there are no candidate attributes to adjust. 

There are three important issues related to the implementation of the proposed post-processing method. The main 
issue are the performance criteria of bp and cp in steps (3) and (8), which are related to the attribute interaction. 
Measure attribute interaction is an important issue for data mining [2], and various measures have been proposed to 
achieve as much. Mutual information [2], interaction gain [3], synergy [18], symmetric uncertainty, ITERACT [18], 
and merit function [2] are well-known methods, and all of them deal with two-way interactions. N-way interactions, 
on the other hand, are those for which N > 2 is measured by an average of two-way interactions for pairs of attributes. 
It is not proper in such cases to capture N-way attribute interaction, and the only way to measure N-way interaction is 
to use the classification accuracy. Classification is a supervised learning method which is dimension-free. Therefore, 
tens of thousands of attributes are no problem for classification. We can think that classification accuracy reflects the 
quality of the attributes and the attribute interaction. Therefore, we can indirectly measure the attribute interaction of 
the known classification algorithms. Jakulin et al. [4] used naïve Bayesian classification to measure the attribute 
interaction. In our experiment we adopt a C5.0 classifier [11,19] because it is widely used to test the quality of 
discretized datasets.  

The second issue is that of reducing the problem space. Some datasets have many attributes, which means that there 
are many cut-points that we must adjust. In order to reduce the computation time, we select m% of best relevant 
attributes in step 4 as candidates to adjust the test. This process assumes that the change of strongly relevant attributes 
influences the classification accuracy more than weakly relevant attributes do. In order to find relevant attributes, we 
evaluate each feature using the attribute selection algorithm from step 1. FSDD [9], Relief [15], MRMR [5], and RFS 
[10] are known algorithms. In our experiment, we simply use mutual information between each attribute and the class 
to measure relevancy because mutual information is simple and allows for a high speed of computation.  

The third issue is that of adjusting the range in step 6. Each attribute contains many data values, and we cannot test 
the adjustment of the cut-points for every data value. Instead, we just test the data values that are near the cut-points, 
which is the adjusting range. The adjusting range for a specific cut-point contains 10% forward data values and 10% 
backward data values.  

III. Experiments and Results 
To test the efficiency of proposed post-processing method, we choose 30 continuous datasets from the UCI 

machine learning repository (http://archive.ics.uci.edu/ml/) and KEEL-dataset site 
(http://sci2s.ugr.es/keel/category.php?cat=clas). Table I summarizes the basic list of the benchmarking datasets, and 
we also choose three supervised (CAIM, CACC, AMEVA) and three unsupervised (INTERVAL, FREQUENCY, 
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CLUSTER) discretization methods, as listed in Table II. The proposed method was considered for supervised 
discretization, but we also experiment with unsupervised discretization in order to compare both methods. 

TABLE I 

Summary of the datasets 

ID Dataset name ID Dataset name 
D1 Abalone D16 page-blocks 
D2 Ecoli D17 parkinsons 
D3 faults.NNA D18 pima-indians-diabetes 
D4 Glass D19 segmentation 
D5 hayes-roth D20 smoke 
D6 Ionosphere D21 sonar 
D7 Iris D22 spectrometer 
D8 letter-recognition D23 statlog_segment 
D9 Lung D24 wdbc 
D10 SRBCT D25 wine 
D11 multi_tissues D26 winequality-white 
D12 Satimage D27 yeast 
D13 SPECTF D28 newthyroid 
D14 Waveform D29 Wholesale_data 
D15 Liver D30 bupa 

TABLE II 

List of discretization methods 

Method Description Ref. 

CAIM 
Class-Attribute 
Interdependence 
Maximization 

[13] 

CACC Class-Attribute 
Contingency Coefficient [6] 

AMEVA Ameva algorithm [12] 
INTERVAL equal interval width [5] 
FREQUENCY equal frequency [5] 
CLUSTER k-means clustering [5] 

We use the R language (http://www.r-project.org) to implement the proposed method and the benchmark test 
program. To test three supervised discretization algorithms, the discretization package in R is used, and the arules 
package is used for the three unsupervised discretization algorithms. A classification accuracy from the C5.0 classifier 
[11] is adopted as a performance criterion for the proposed method, as implemented in the C50 package. To compare 
the improvement of the classification accuracy between the original dataset and the post-processed dataset, we use the 
C5.0 classifier. In order to avoid the overfitting problem, we apply 10-fold cross validation and repeat it 5 times. For 
our proposed method, therefore, there is no improvement in the classification that is a result of chance. 

Tables III and IV present the comparison for the classification accuracy between normal discretization and post-
processed datasets. From Tables III and IV, we can observe as follows: 
 Overall, the discretized datasets due to the supervised discretization induce better classification accuracy than by 

some unsupervised discretization. (see values of ‘N’ columns in Tables III and IV.) 
  The adjusted datasets from the supervised discretization show a much more improved number of cases than from 

some unsupervised discretization. In the improved case, the classification accuracy is improved after applying the 
proposed post-processing method. 

  Though the proposed method is not well-matched with unsupervised discretization, some datasets show a high 
improvement in classification accuracy, such as D6 with INTERVAL and FREQUENCY or D11 with 
FREQUENCY. Post-processing brings 7%, 5.3%, and 12.6% improvements to classification accuracy in these 
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cases. 
  If the number of adjusted attributes/instances is small in a dataset, it tends to show a small improvement in 

classification accuracy, and vice versa. This may imply that each dataset has a different degree of interactions 
between the attributes.  

  Though the proposed method fits well with supervised discretization, some discretization methods present low 
efficiency in terms of their improvement. In Table III, CACC produces a lower improvement than CAIM and 
AMEVA do.  

TABLE III 

Comparison of classification accuracy between normal supervised discretization and post-processed datasets 

 CAIM CACC AMEVA 

 N P C N P C N P C 

D1 0.546 0.550 6/6 0.543 0.548 4/4 0.543 0.548 4/4 
D2 0.837 0.864 2/2 0.817 0.826 4/4 0.817 0.826 4/4 
D3 0.731 0.728 6/6 0.748 0.753 11/11 0.744 0.743 12/12 
D4 0.736 0.739 3/3 0.682 0.708 1/1 0.716 0.724 3/3 
D5 0.837 0.855 1/1 0.863 0.863 0/0 0.851 0.851 0/0 
D6 0.902 0.914 4/4 0.905 0.919 4/4 0.913 0.913 3/3 
D7 0.940 0.953 1/1 0.940 0.953 1/1 0.940 0.953 1/1 
D8 0.880 0.880 1/1 0.880 0.880 1/1 0.880 0.880 1/1 
D9 0.731 0.734 1/1 0.789 0.789 0/0 0.758 0.765 2/2 
D10 0.871 0.879 2/2 0.919 0.919 0/0 0.890 0.911 2/2 
D11 0.829 0.833 3/3 0.767 0.767 0/0 0.791 0.819 3/3 
D12 0.864 0.864 9/7 0.859 0.857 7/5 0.859 0.857 7/5 
D13 0.730 0.853 4/4 0.728 0.755 2/2 0.740 0.813 3/3 
D14 0.773 0.783 16/15 0.789 0.787 12/12 0.787 0.790 14/14 
D15 0.696 0.699 1/1 0.688 0.709 4/4 0.673 0.686 5/5 
D16 0.966 0.967 2/2 0.970 0.970 3/3 0.970 0.970 3/3 
D17 0.862 0.911 8/8 0.904 0.911 7/7 0.909 0.920 5/5 
D18 0.743 0.760 3/3 0.772 0.774 3/3 0.767 0.784 4/4 
D19 0.870 0.865 1/1 0.898 0.906 1/1 0.899 0.911 1/1 
D20 0.425 0.446 3/3 0.418 0.418 0/0 0.538 0.555 3/3 
D21 0.800 0.780 8/8 0.782 0.782 0/0 0.810 0.859 3/3 
D22 0.841 0.847 1/1 0.863 0.859 4/4 0.860 0.867 4/4 
D23 0.961 0.962 4/4 0.969 0.970 4/4 0.968 0.970 5/5 
D24 0.955 0.965 5/5 0.946 0.965 6/6 0.949 0.951 9/9 
D25 0.937 0.957 3/3 0.949 0.970 2/2 0.944 0.973 2/2 
D26 0.564 0.564 8/8 0.593 0.595 4/4 0.573 0.576 7/7 
D27 0.598 0.599 2/2 0.572 0.585 2/2 0.576 0.585 2/2 
D28 0.940 0.957 2/2 0.943 0.953 1/1 0.943 0.953 1/1 
D29 0.912 0.909 1/1 0.918 0.922 3/3 0.919 0.924 4/4 
D30 0.696 0.699 1/1 0.686 0.706 3/3 0.652 0.656 3/3 

 

Taijun Han et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 418



N: accuracy by normal discretization  
P: accuracy by proposed method 
C: number of adjusted features/ number of adjusted instanced 

TABLE IV 

Comparison of classification accuracy between normal unsupervised discretization and post-processed datasets 

 INTERVAL FREQUENCY CLUSTER 

 N P C N P C N P C 

D1 0.54 0.54 0/0 0.539 0.544 5/5 0.541 0.541 0/0 
D2 0.64 0.64 0/0 0.655 0.652 1/1 0.647 0.647 0/0 
D3 0.72 0.72 7/7 0.685 0.684 12/12 0.722 0.728 7/7 
D4 0.71 0.71 1/1 0.697 0.701 1/1 0.704 0.704 0/0 
D5 0.63 0.64 1/1 0.644 0.644 0/0 0.746 0.746 0/0 
D6 0.83 0.90 3/3 0.813 0.866 11/11 0.876 0.907 5/5 
D7 0.97 0.97 0/0 0.977 0.977 0/0 0.957 0.957 0/0 
D8 0.88 0.88 1/1 0.880 0.881 9/4 0.878 0.878 1/1 
D9 0.75 0.75 1/1 0.723 0.723 0/0 0.750 0.750 0/0 
D10 0.88 0.88 1/1 0.797 0.841 2/2 0.823 0.804 2/2 
D11 0.79 0.79 0/0 0.677 0.803 1/1 0.822 0.822 0/0 
D12 0.86 0.86 0/0 0.862 0.862 1/1 0.858 0.858 0/0 
D13 0.73 0.73 2/2 0.745 0.745 1/1 0.640 0.640 4/4 
D14 0.77 0.77 0/0 0.768 0.768 6/5 0.771 0.771 0/0 
D15 0.68 0.68 1/1 0.629 0.650 3/3 0.659 0.659 0/0 
D16 0.96 0.96 1/1 0.968 0.968 1/1 0.970 0.970 0/0 
D17 0.88 0.88 0/0 0.884 0.884 0/0 0.881 0.881 0/0 
D18 0.73 0.73 0/0 0.732 0.728 4/4 0.740 0.740 0/0 
D19 0.45 0.45 0/0 0.490 0.500 1/1 0.475 0.475 0/0 
D20 0.46 0.44 2/2 0.374 0.392 4/4 0.373 0.365 2/2 
D21 0.75 0.75 0/0 0.753 0.751 1/1 0.708 0.708 0/0 
D22 0.81 0.81 8/8 0.827 0.827 2/2 0.827 0.830 1/1 
D23 0.59 0.59 0/0 0.606 0.606 0/0 0.592 0.592 0/0 
D24 0.94 0.94 0/0 0.931 0.931 0/0 0.948 0.942 1/1 
D25 0.93 0.93 0/0 0.916 0.916 0/0 0.955 0.955 0/0 
D26 0.58 0.58 0/0 0.585 0.585 7/7 0.586 0.586 0/0 
D27 0.52 0.53 1/1 0.575 0.571 6/6 0.550 0.560 1/1 
D28 0.939 0.939 0/0 0.920 0.920 1/1 0.940 0.940 0/0 
D29 0.895 0.895 0/0 0.904 0.904 0/0 0.903 0.903 0/0 
D30 0.670 0.670 0/0 0.647 0.648 1/1 0.681 0.681 0/0 

Table V summarizes the experiment results. The proposed method has a high ratio of cases for improvement (63%–
80%) with CAIM, CACC, and AMEVA. Their average improved classification accuracies are of 1.63%, 1.19%, and 
1.49%, which are meaningful improvements for the classification test. Unsupervised discretization does not consider 
the correlation between the attributes and class information. Therefore, the adjustment of the cut points is not 
influenced by the class information, and the proposed method does not work well. 
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TABLE V 

Summary of experiments 

Method 
# of improved 

cases  
# of same cases 

# of decreased cases 
Average improved 

accuracy (%) 
CAIM 23 (76.7) 3 (10.0) 4 (13.3) 1.63 
CACC 19 (63.3) 8 (26.7) 3 (10.0) 1.19 
AMEVA 24 (80.0) 4 (13.3) 2 (6.7) 1.49 
INTERVAL 3 (10.0) 26 (86.7) 1 (3.3) 3.17 

( ) : proportion of the cases against 30 cases 

IV. CONCLUSIONS 

Discretization is one of the forms of basic pre-processing that must be done before many machine learning tasks are 
employed. Previous discretization algorithms discretize each attribute in a dataset independently, and in order to consider the 
interaction between the attributes, we suggested a post-processing step that can be performed upon discretized datasets. The 
experimental results show that the proposed method can improve the quality of the datasets and can bring classification 
accuracy, and this method works well with various supervised discretization algorithms. 

In this study, we use a C5.0 classifier to measure the performance criterion, since this performance criterion works 
well for classification tasks. If discretization is performed for other tasks, then some other proper performance 
criterion can be designed. Choosing the performance criterion should depend on the targeted machine learning task, 
which shares the same principle with a wrapper or embedded feature selection model [17]. The implementation of the 
proposed method is posted on ‘http://biosw.dankook.ac.kr/biosw/postDiscretization’. 

ACKNOWLEDGMENT 

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-
2012S1A2A1A01028576). Corresponding author is Sejong Oh. 

REFERENCES 

[1] A. A. Freitas. Understanding the Crucial Role of Attribute Interaction in Data Mining. ARTIF INTELL REV, 2001, 16:177--199. 

[2] A. Jakulin. Machine Learning Based on Attributes Interactions, PhD Dissertation, University of Ljubljana, 2005. 

[3] A. Jakulin, I. Bratko. Analyzing Attribute Dependencies. LECT NOTES ARTIF INT, PKDD 2003, 2003, 229—240 

[4] A. Jakulin, I. Bratko, D. Smrke. Attribute Interactions in Medical Data Analysis. LECT NOTES ARTIF INT 2780, AIME 2003, 2003, 229--238. 

[5] C. Ding, H. Peng. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. in: Proceedings of the IEEE Computer 

Society Conference on Bioinformatics, IEEE Computer Society, 2003, 523. 

[6] C. J. Tsai, C. I. Lee, W. P. Yang. A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Sciences, 2008, 178:714-

-731. 

[7] H. Liu, F. Hussain, C. L. Tan, M. Dash. Discretization: An Enabling Technique. DATA MIN KNOWL DISC, 2002, 6:393--423. 

[8] J. L. Lustgarten, S. Visweswaran, V. Gopalakrishnan, G. F. Cooper. “pplication of an efficient Bayesian discretization method to biomedical data. 

BMC Bioinformatics, 2011, 12(309):1--15. 

[9] J. Liang, S. Yang, A. Winstanley. Invariant optimal feature selection: A distance discriminant and feature ranking based solution. PATTERN 

RECOGN, 2008, 41:1429--1439. 

[10] J. Lee, N. Batnyam, Oh S. RFS: Efficient feature selection method based on R-value. COMPUT BIOL MED, 2013, 43:91--99. 

[11] L. Breiman, J. Friedman, R. Olshen, C. Stone. Classification and Regression Trees, New York: Chapman and Hall, 1984. 

[12] L. Gonzalez-Abril, F. J. Cuberos, F. Velasco, J. A. Ortega. Ameva: An autonomous discretization algorithm. EXPERT SYST APPL, 2009, 

36:5327—5332 

[13] L. A. Kurgan, K. J. Cios. CAIM Discretization Algorithm, IEEE T KNOWL DATA EN, 2004, 16:145--153.  

[14] M. Hahsler, B. Gr¨un, K. Hornik, C. Buchta. Introduction to arules – A computational environment for mining association rules and frequent item 

sets. J STAT SOFTW, 2005, 14 (15):1--25. 

[15] M. Robnik-Sikonja, I. Kononenko. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach Learn, 2003, 53:23--69. 

[16] Y. Li, L. Liu, X. Bai, H. Cai, W. Ji, D. Guo, Y. Zhu. Comparative study of discretization methods of microarray data for inferring transcriptional 

regulatory networks. BMC Bioinformatics, 2010, 11(520): 1--6. 

[17] Y. Saeys, I. Inza, P. Larranaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23(19):2507--2517.  

[18] Z. Zhao, H. Liu. Searching for interacting features. INTELL DATA ANAL, 2009, 13:207--228. 

[19] S. Garcia, J. Luengo, J. A. Sáez, V. López, A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning, 

IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4 ): 734-750. 

Taijun Han et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 420



AUTHOR PROFILE 

Taijun Han is a master student at the Nanobiomedical Science of Dankook University. His main research interests are data 
classification and bioinformatics. 

Sangbum Lee is a professor of Department of Computer Science at Dankook University, Korea. His main research interests 
are software engineering, ontology, and bioinformatics. 

Sejong Oh received a Doctor, Master, and Bachelor degree in Computer Science from Sogang University, Korea, in 2001, 
1991, and 1989. From 2001 to 2003, he was a postdoctoral fellow in the laboratory for Information Security Technology at 
George Mason University, USA. Since 2003 he joined the Department of Computer Science at Dankook University, Korea, 
and is currently associate professor in WCU Research Center of NanoBioMedical Science. His main research interests are 
bioinformatics, information system, and information system security. 

Taijun Han et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 421


	Improving Discretization by Post-Processing Procedure
	Abstact
	Keywords
	I. INTRODUCTION
	II.POST-PROCESSING METHOD FOR DISCRETIZATION
	III. Experiments and Results
	IV. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	AUTHORPROFILE




