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Abgact. Bioinformatics and data mining require data analysis schemes. Many methods of analyss, such
as those focusing on entropy, have been developed and assume that the input data has discrete values.
Therefore, when using continuous data, discretization needs to be performed before analysis can begin.
Many discretization algorithms have been proposed, and these discretize a given dataset attribute-by-
attribute. Although such methods assume that the attributes are independent from each other, in reality
these attributes interact with and influence the results of the analyss as a group, not individually. In this
paper we propose a post-processing method that can improve the quality of discretization. After the normal
discretization process, we adjust the boundary point of the discretization for each attribute, and then after
evaluating the group effect of the adjusted point, we update the original boundary point by adjusting it if it
has a pogtive influence on the attribute. The reaults of the empirical experiments show that the adjusted
datasat improves the cdasdfication accuracy. Proposed method can be used with any discretization
algorithms, and improvesther discretization power.
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I. INTRODUCTION

In the genomics age, high-throughput data techniques can produce an abundance of high-dimensiond biomedica
data The andyds of such data presents significant andyticd and computationd chdlenges, and for this reason
various data mining techniques have been developed [8]. Many types of data mining and bioinformatics tools require
for data to be discretized and, for example, microarray deta discretization is a basic pre-process for many dgorithms
that are used for gene regulatory network inference [16]. Mgor data andyss schemes — such as at-ted, a Bayesan
network, mutua information, and symmetric uncertainty — are based on probability theory and on entropy theory, and
they require discrete data as an input in order to calculate some probability or entropy vaue, which illustrates why
discretization isrequired for continuous data

Dozens of discretization methods have been proposed sncethe early computer age, and Liu et d. [ 7] suggested that
discretization methods could be grouped as follows (1) supervised vs. unsupervised discretization, were
dassficaion depends on whether dass information is used during discretizing; (2) local vs. global discretization,
where alocd method discretizesin alocalized region of the instance space whereas a globa method usesthe entirety
of theingtance gpace; (3) top-down vs. bottom-up discretization, where top-down methods gart with an empty list of
cut-points (split-points) and new ones are added to the list by ‘ plitting’ the intervals whereas bottom-up methods start
with the complete lig of al the continuous va ues as cut-points and gradudly remove some of them by ‘merging’ the
intervels.

In this study, we consider supervised and top-down/bottom-up approaches because the supervised method is more
efficient than an unsupervised one. Top-down or bottom-up methods generdly contain the following steps|[7]:

(2) sort continuous datafor discretization

(2) sdect acandidate cut-point or adjacent intervals

(3) invoke appropriate eva uation measures

(4) if theevaduaion vdueis stisfied, split or mergetheintervas, dsegoto (2)

(5) if astopping criterionis satisfied, finish the discretization, dsegoto (2)

The limitation of the supervised methods that were previoudy proposed is that they do not condder attribute
interaction. Each attribute is discretized under a relationship with a dass atribute, and other attributes have no
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influence in any way. This means that previous supervised methods assume an independence between the attributes.
In redlity, however, dtributes interact with each other in supervised learning [4, 5]. This interaction influences the
performance of the dassfication accuracy, among other measures. Therefore, when we develop a discretization
method, we need to cons der theinteractions between the attributes.

In the context of a supervised prediction task, typicaly for dassfication, atribute interaction can be defined in the
following manner [2]. Suppose there are three attributes C, X4, and X, where C is the dass atribute that is to be
predicted, and X; and X, are predictor atributes. X; and X, interact when the prediction or magnitude of the
relationship between C and X; depend on the vadue of X,. We then cdl this a two-way interaction. Higher-order
atribute interactions can therefore be defined in asimilar way. Let us suppose acc(X, C) isthe dassfication accuracy
by attribute X onto dass C. If acc({ X1, X, }, C) > max{acc(X4, C), acc(X,, C] ), then a postive interaction exists
between X; and X, . If acc({ X4, X»}, C) < minfacc(X4, C) , acc(X,, C) ], then there is a negative interaction between
lede.

In this study we suggest a post-processing technique that can be used dfter discretization to reflect atribute
interaction. Proposed method is not new discretization dgorithm; it makes enhancement of given discretization
dgorithm. After discretization is finished using any agorithms, we adjugt the cut-points congidering the atribute
interaction. In the result of the empirical experiments, we confirm that the adjusted dataset brings an improvement
for classfication accuracy.

I1.POST-PROCESSING METHOD FOR DISCRETIZATION

In an ordinary discretization process, we use continuous vaues as an input of a given atribute, and then the
discretization dgorithm finds the proper cut-points that correspond to the evauation criterion. Findly, the continuous
vaues are converted into discrete values by using these cut-points (see Fig. 1). Every atribute is converted to discrete
vauesinthe sameway. Aswe had previoudy mentioned, this gpproach does not consider the interaction between the
atributes. Therefore, we could inject the effect of the interaction into the discretization dgorithm, but this would be
difficult and complex. Our drategy is to separae the discretization and to reflect the atribute interaction. The
advantage of this gpproach isthat we can separatdly develop adiscretization method and then gpply amethod to take
into account attribute i nteraction.

Continuous data

012 013 021 025 046 0.55 055 091 099 124 145 146 147 291 295

Cut-points

Discrete data

1 1 1 1 2 2 2 2 3 3 3 3 3 4 4

Hg. 1. Ordinary discretization process

Now, we describe the post-processing method that is used for the discretization method. Our basic ideaisto adjust
the cut-points, and to make a new discretization according to the adjusted points. We then re-eva uate the discretized
dataset in a manner that takes into account the interaction of the attributes. If adjusting a cut-point brings an
improvement in the evauation of the vaue, we change the origind cut-point to the adjusted cut-point and re-generate
the discrete dataset. Let us then suppase that our method is given an origina continuous dataset (CD), a discretized
dataset (DD), and cut-points of dl attribute for discretization (CUT-POINTS). The proposed post-processing method
isasfollows
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(2) evduate the relevance of each etributein DD and of the dass attribute
(2) sort attributesin DD, CD, CUT_POINTSin descending order of rlevance.
(3) cdculate the base performance criterion vaue, bp, usng CD
(4) take M6 of best rlevant attributes as a candidate for the adjusting process. (In our experiment, m=10.)
(5) take an attribute x from the candidate attributes
(6) takeacut-point p of x and find the adjusting range
(7) moveptop and re-discritize x according to
(8) cdculate the new performance criterion value cp using the adjusted DD

(9) if gp>bp changep = p'and bp = cp. Goto (6)
(10) repeat steps 5-9 until there are no candidate attributesto adjust.

There are three important issues rdated to the implementation of the proposed post-processing method. The main
issue are the performance criteria of bp and ¢p in steps (3) and (8), which are rdaed to the atribute interaction.
Measure aitribute interaction is an important issue for data mining [2], and various measures have been proposed to
achieve as much. Mutud information [2], interaction gain [3], synergy [18], symmetric uncertainty, ITERACT [18],
and merit function [2] are wdl-known methods, and dl of them ded with two-way interactions. N-way interactions,
on the other hand, arethose for which N > 2 ismeasured by an average of two-way interactionsfor pairs of attributes.
It isnot proper in such casesto capture N-way attribute interaction, and the only way to measure N-way interaction is
to use the dasdfication accuracy. Classfication is a supervised learning method which is dimension-free. Therefore,
tens of thousands of attributes are no problem for dassfication. We can think that classification accuracy reflects the
qudity of the atributes and the attribute interaction. Therefore, we can indirectly measure the attribute interaction of
the known dassfication adgorithms. Jakulin et d. [4] used naive Bayesan dassfication to measure the atribute
interaction. In our experiment we adopt a C5.0 dassfier [11,19] because it is widdly usad to test the qudity of
discretized detesets

The second issueisthat of reducing the problem space. Some datasets have many attributes, which meansthet there
are many cut-points that we mugt adjust. In order to reduce the computation time, we sdect 6 of best rdevant
atributesin step 4 as candidates to adjust the test. This process assumes that the change of strongly rdevant attributes
influences the dassification accuracy more than weskly relevant attributes do. In order to find rdlevant ettributes, we
eva uate eech feature udng the attribute selection agorithm from step 1. FSDD [9], Rdief [15], MRMR [5], and RFS
[10] are known agorithms. In our experiment, we smply use mutud informetion between each attribute and the class
to meesure rlevancy because mutud informeation issmple and dlowsfor ahigh speed of computation.

Thethird issueisthat of adjusting the range in step 6. Each attribute contains many data values, and we cannot test
the adjustment of the cut-points for every data vaue. Instead, we just test the data values that are near the cut-points,
which isthe adjusting range. The adjugting range for a gpecific cut-point contains 10% forward data values and 10%
backward datavalues.

[11. Experimentsand Results

To test the efficdency of proposed pogt-processng method, we choose 30 continuous datasets from the UCI
meachine learning repository (http://archiveicsud.edu/ml/) and KEEL-datasst dte
(http://sci2s.ugr.es’ked/category.php?ca=clas). Table | summarizes the bedic list of the benchmarking datasets, and
we aso choose three supervised (CAIM, CACC, AMEVA) and three unsupervised (INTERVAL, FREQUENCY,
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CLUSTER) discretization methods, as listed in Table 1l. The proposed method was consdered for supervised
discretization, but we aso experiment with unsupervised discretization in order to compare both methods.
TABLE|
Summary of the detasets

ID Dataset name ID Dataset name
D1 Abdone D16 page-blocks
D2 Ecoli D17 parkinsons
D3 faultsNNA D18 pimarindians-diabetes
D4 Glass D19 segmentation
D5 hayes-roth D20 snoke
D6 lonosphere D21 sonar
D7 Iris D22 Soectrometer
D8 |etter-recognition D23 datlog segment
D9 Lung D24 wdbc
D10 SRBCT D25 wine
D11 multi_tissues D26 winequality-white
D12 Satimage D27 yead
D13 SPECTF D28 newthyroid
D14 Waveform D29 Wholesde data
D15 Liver D30 bupa
TABLEII
List of discretization methods
Method Description Ref.
Class-Attribute
CAIM | nterdependence [13]
Maximization
Class-Attribute
CACC Contingency Coefficiert [6]
AMEVA Amevadgorithm [12]
INTERVAL equd intervd width [5]
FREQUENCY equd frequency [5]
CLUSTER k-meansdustering [5]

We use the R language (http:/AMwwwi.r-project.org) to implement the proposed method and the benchmark test
program. To test three supervised discretization dgorithms, the discretization package in R is used, and the arules
packageis used for the three unsupervised discretization dgorithms. A dlassification accuracy from the C5.0 dasdifier
[11] is adopted as a performance criterion for the proposed method, asimplemented in the C50 package. To compare
theimprovement of the classification accuracy between the origind datasat and the post-processed dataset, we usethe
C5.0 dassfier. In order to avoid the overfitting problem, we gpply 10-fold cross validation and repest it 5 times. For
our proposed method, therefore, thereis no improvement in the classification thet isaresult of chance.

Tables 11l and IV present the comparison for the dassification accuracy between norma discretization and pogt-
processed datasats. From Tables 111 and 1V, we can observe asfollows:

* Overdl, the discretized datasets due to the supervised discretization induce better dassification accuracy than by
some unsupervised discretization. (seevauesof ‘N’ columnsin Tableslil and 1V.)

* Theadjusted datasats from the supervised discretization show amuch more improved number of casesthan from
some unsupervised discretization. In theimproved case, the dassification accuracy isimproved after applying the
proposed post-processing method.

* Though the proposed method is not well-matched with unsupervised discretization, some datasets show ahigh
improvement in classification accuracy, such as D6 with INTERVAL and FREQUENCY or D11 with
FREQUENCY. Post-processing brings 7%, 5.3%, and 12.6% improvementsto dassification accuracy inthese
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cases.

* If the number of adjusted attributes/ingancesissmal in adatass, it tendsto show asmall improvement in
dassfication accuracy, and vice versa. Thismay imply that each dataset has a different degree of interactions
between the attributes.
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» Though the proposed method fits wel with supervised discretization, some discretization methods present low
efficiency in terms of ther improvement. In Table I1I, CACC produces a lower improvement than CAIM and
AMEVA do.

TABLEIII
Comparison of classification accuracy between norma supervised discretization and post-processed datasets

CAIM CACC AMEVA
N P C N P C N P C
D1 0546 0550 6/6 0543 0548 44 0543 0548 44
D2 0.837 0.864 22 0.817 0.826 44 0.817 0.826 44
D3 0.731 0728 6/6 0.748 0.753 11/11 0.744 0.743 12/12
D4 0.736 0.739 33 0,682 0.708 171 0716 0724 33
D5 0.837 0.855 1 0.863 0.863 00 0.851 0851 00
D6 0.902 0914 44 0905 | 0919 44 0913 | 0913 33
D7 0.940 0.953 171 0.940 0.953 11 0.940 0.953 11
D8 0.880 0.880 11 0.880 0.880 11 0.880 0.880 11
D9 0731 0734 1 0.789 0.789 00 0.758 0.765 202
D10 0871 0.879 22 0919 0.919 00 0.890 0911 202
b1 0.829 0833 33 0.767 0.767 00 0.791 0819 33
D12 0864 | 0864 97 0859 | 0857 715 0.859 0.857 7/5
D13 0.730 0.853 44 0.728 0.755 22 0.740 0813 33
D14 0.773 0.783 16/15 0.789 0.787 12/12 0.787 0.790 14/14
D15 0,69 0.699 11 0,688 0.709 44 0673 0.686 5/5
D16 0.966 0.967 212 0970 0970 33 0970 0970 33
D17 0.862 0911 8/8 0.904 0911 77 0.909 0.920 5/5
D18 0.743 0.760 33 0772 0.774 33 0.767 0.784 44
D19 0.870 0.865 11 0.898 0.906 11 0.899 0911 11
D20 0425 0.446 33 0418 0418 00 0538 0555 33
D21 0.800 0.780 8/8 0.782 0.782 00 0810 0.859 33
D22 0841 0847 1 0.863 0.859 44 0.860 0.867 44
D23 0.961 0.962 44 0.969 0.970 44 0.968 0.970 5/5
D24 0.955 0.965 5/5 0.946 0.965 6/6 0.949 0.951 9/9
D25 0.937 0957 33 0.949 0.970 22 0944 0973 2/2
D26 0564 0564 88 0593 0595 44 0573 0576 717
D27 0598 0599 22 0572 0585 22 0576 0585 22
D28 0.940 0957 212 0943 0953 11 0943 0953 11
D29 0912 0.909 171 0918 | 092 33 0.919 0.924 44
D30 0.69 0.699 171 0.686 0.706 33 0.652 0.656 33
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N: accuracy by normd discretization
P: accuracy by proposed method
C: number of adjusted features/ number of adjusted ingtanced

TABLEIV
Comparison of dlassification accuracy between normal unsupervised discretization and post-processed datasets

INTERVAL FREQUENCY CLUSTER

N P c N P C N P C
D1 054 054 00 0539 0544 5/5 0541 0541 00
D2 064 064 00 0.655 0.652 11 0.647 0647 00
D3 0.72 072 717 0.685 0.684 12/12 0722 0.728 717
D4 071 071 1 0.697 0.701 11 0.704 0.704 00
D5 063 064 11 0.644 0.644 00 0.746 0.746 00
D6 0.83 0.90 33 0813 0.866 11/11 0876 | 0907 5/5
D7 097 097 00 0977 0977 00 0.957 0957 00
D8 0.88 0.88 11 0.880 0.881 94 0.878 0878 11
D9 0.75 0.75 11 0723 0723 00 0.750 0.750 00
D10 0.88 0.88 11 0.797 0841 22 0.823 0.804 22
D11 0.79 0.79 0/0 0677 0.803 11 0.822 0822 00
D12 0.86 0.86 00 0.862 0.862 171 0858 | 0858 00
D13 0.73 0.73 202 0.745 0.745 11 0.640 0.640 44
D14 0.77 0.77 00 0.768 0.768 6/5 0771 0771 00
D15 068 0.68 11 0.629 0.650 33 0.659 0.659 00
D16 096 0.9 11 0.968 0.968 11 0970 0970 00
D17 0.88 0.88 0/0 0.884 0.884 00 0.881 0.881 00
D18 0.73 073 0/0 0732 0.728 44 0.740 0.740 00
D19 045 045 00 0.490 0500 11 0475 0475 00
D20 046 044 22 0.374 0.392 44 0373 0.365 2/2
D21 0.75 075 00 0.753 0.751 11 0.708 0.708 00
D22 081 081 88 0.827 0.827 212 0.827 0.830 11
D23 059 059 00 0.606 0.606 00 0592 0592 00
D24 094 094 0/0 0931 0931 00 0.948 0942 11
D25 093 093 00 0916 0916 0/0 0.955 0.955 00
D26 058 058 00 0585 0585 717 0586 0586 00
D27 052 053 11 0575 0571 6/6 0550 0560 11
D28 0.939 0.939 00 0.920 0.920 11 0.940 0.940 00
D29 0.895 0.895 0/0 0904 | 0904 00 0903 | 0903 00
D30 0670 | 0670 00 0.647 0.648 11 0,681 0681 00

Table V summarizes the experiment results. The proposed method has a high ratio of cases for improvement (63%—
80%) with CAIM, CACC, and AMEVA. Their average improved dassfication accuracies are of 1.63%, 1.19%, and
1.49%, which are meaningful improvements for the classfication test. Unsupervised discretization does not consider
the corrdation between the atributes and dass information. Therefore, the adjustment of the cut points is not
influenced by the dassinformation, and the proposed method does not work well.
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TABLEV
Summary of experiments
Method #ofimproved | #of ssmecases #0f decreased casss Averageimproved
cases accuracy (%)

CAIM 23(76.7) 3(10.0 4(13.3) 1.63
CACC 19(63.3 8(26.7) 3(10.0 119
AMEVA 24(80.0) 4(13.3) 2(6.7) 149
INTERVAL 3(10.0) 26 (86.7) 1(33 317

() : proportion of the cases againg 30 cases
IV. CONCLUSIONS

Discretization is one of the forms of basic pre-processng that must be done before many machine learning tasks are
employed. Previous discretization dgorithms discretize each ettribute in a dataset independently, and in order to condder the
interaction between the attributes, we suggested a podt-processing step thet can be performed upon discretized datasets. The
experimenta results show thet the propased method can improve the qudity of the datasets and can bring dassfication
accuracy, and this method works we | with various supervised discretization dgorithms.

In this gudy, we use a C5.0 dassfier to measure the performance criterion, since this performance criterion works
wdl for dassfication tasks If discretization is performed for other tasks, then some other proper performance
criterion can be designed. Choosing the performance criterion should depend on the targeted machine learning task,
which shares the same principle with awragpper or embedded festure selection modd [17]. Theimplementation of the
proposed method is posted on * http://bi osw.dankook.ac.kr/biosv/postDiscretization' .
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