
Ontology-based Knowledge Management
Zina Houhamdi #1, Belkacem Athamena*2

Software Engineering Department, Al Ain University of Science and Technology
Al Ain, Abu Dhabi, UAE
1 z_houhamdi@yahoo.fr

* MIS Department, Al Ain University of Science and Technology
Al Ain, Abu Dhabi, UAE

2 athamena@gmail.com

Abstract—It is recognized that knowledge has a considerable usefulness in people's daily life and all
businesses. The current paper discusses a knowledge description using ontology and its application in
Multi Agent Systems (MAS). The presented work proposes to reach a powerful relationship between
MAS and Knowledge Management (KM), principally by introducing results achieved in the semantic web
domain to MAS. The proposed method is to apply KM in MAS using ontology, wherever undetermined
knowledge is absent. This is an appropriate model for various cases particularly when we require
experience management.

Keyword—Ontology, Multi Agent System, Knowledge Management, UML

I. INTRODUCTION

Knowledge is actually an essential attractive feature in the universe. The economy realm is changing in the
direction of the so labeled knowledge economy, where the more esteemed resource is the knowledge [8]. This
paper perceives knowledge as is symbolized by semantic web research. Nowadays KM approaches use
principally centralized approaches, which don’t enough, fulfill the requirements to include diverse and
distributed context. KM systems are generally conceived for a real/small number of applications. In this
situation, agents are appropriate solutions; however MAS approaches miss intelligence and knowledge. Agents
perceive conventional knowledge in the same manner as human.

The agent use distributed approach; hence it is analogous to the real world. Nevertheless we require particular
pivotal accessible locations. This study takes charge of collaborating intelligent agents, which can be mobile if
necessary however don’t have to be. The research concentrates on an agent oriented model for KM systems [20].

The protégé ontology editor and commonKADS methodology will be adopted for knowledge description. The
JADE agent system will be used for the architecture implementation.

MAS or Agent Oriented Programming (AOP) is an extremely strong approach in heterogeneous non-
centralized information systems which require knowledge in reasoning and description. For the time being,
MAS lack link with actual standards of the commercial technology and the research results in the semantic web.
MAS require to include finding of various flied of computer sciences including knowledge management,
artificial intelligence, negotiation etc. [9]. Knowledge is normally defined by predicate logic, rules or states.
These definitions are very robust however it is difficult to obtain information in that manner from operational
information systems or from user. And also it is difficult to display information declared in predicate logic, for
example, to people.

Ontology as known in modern information systems is similar to the semantic web. It is described using
XML/RDF, which can be more simply obtained from or sent back to a current information system or user. For
this reason, the knowledge is brought in to MAS, using semantic web outcomes, and an appropriate agent
knowledge model is formulated. We have developed an agent library to uphold this model and consequently
improve the JADE agent system (evaluated as the top implemented toolkit in existing MAS).

First, this paper presents the description of the agent architecture and knowledge model. Secondly, it specifies
the methodology to produce an agent knowledge model and finally, it defines the proposed approach for
managing MAS ontology using Java libraries.

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 51

II. BACKGROUND

This section presents the actual literature in subjects of concern: software agents, knowledge management
and ontologies. Further, it explains the study background and motivation.
A. Agent

All software technologies are totally distinct from Agents since these technologies are principally function
oriented. In contrast, the agent technology is the following step from Object Oriented Programming (OOP) to
AOP.

When we deal with agents we signify agents in MAS, where we have several agents and these agents are able
to communicate. Based on the research direction, the world agent is defined divergently. The literature contains
various definitions of an agent. In this paper, we adopt the agent definition proposed by the Agent-Link II: An
agent is a computer system capable of flexible autonomous action in a dynamic, unpredictable and open
environment [11].

There are 2 types of agent (e.g. Fig. 1): Robotic agent (implanted on hardware) and Software agent
(supported by software). Mobile agents describe the subset of software agents that can migrate between
locations. The mobility can be weak and strong. The weak mobility signifies that an agent moves and takes just
the program and attributes. The mobility is strong when an agent travels from one workstation to another it
carries its execution state and its attributes and program.

Simulation Agent is a software agent type. It assists to imitate a discrete system. This kind of system is too
complex or can’t be defined by mathematical equations. Simulation of ants’ behavior is the top popular example
[19].

The agency is the software context where the intelligent agents operate. They communicate via messages
passing. These agents apply the artificial intelligence methods (e.g. reasoning, negotiation, learning, and
decision support). They can have besides a number of sensors to perceive outer environment and other
techniques to affect special systems in the context. Intelligent agents learn and operate by passing message.

Fig. 1. Agents Classification

FIPA (Foundation for Intelligent Physical Agents) agent use FIPA standards [4]. Agents’ communication is
achieved by the FIPA ACL (Agent Communication Language) [7]. Interaction between agents uses ontology.
The agent program requires sustaining a directory manager in which all agents can enroll.

Several hybrid approaches can be obtained by combining different types of agents together for example
mobile-intelligent agents or software-robotic agents.

We give this recapitulation to clarify the agent definition since it is overcast in computer society the real
meaning of the word agent. Whenever the term agent is cited in the paper, it refers to FIPA Agent.
B. Ontology

Ontology has usually different interpretations. It is perceived as thesaurus, taxonomy or vocabulary. We
adopt the semantic web team definition for ontology: Ontology is a specification of problem context which
represents the domain objects with their attributes and their relationships [2]. Ontology is recognized as a very
crucial characteristic in diverse systems to give a semantic skeleton for KM. More precisely; ontology can be
defined as a collection of descriptions of knowledge elements which are attributes, functions, classes and
relationships. Ontology describes information concerning objects as hierarchical framework by classifying the
objects based on their important characteristics.

The processing is not the biggest ontology utility. The exceptional advantages of ontology are meaning
sharing, gradual occurrence and detection of holes and improvement of the implicit knowledge migration.
Ontology includes structured knowledge described in a formal language as well as unorganized or undefined
knowledge represented in a procedural style or natural language.

Agent

FIPA Agent Others

Mobile Agent Intelligent Agent Simulation Agent

Robotic Agent Software Agent

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 52

Ontology in computer language represents knowledge in organized and formal way. The ontology is
conceived to act as a feedstock for problem solving and MAS. During the agents’ inter-operation, the ontology
describes formally the significance of the used vocabularies. This issue is essential since the external context
and purposes adequacy can be perceived differently by the distinct agents. However they can still inter-operate
to execute a shared task.

Ontology can be described by UML [13], RDF (Resource Description Framework) [15], DAML+OIL [3],
OWL [14], any object oriented language. The semantic web society considers OWL–Web ontology language as
the best ontology description. But, other descriptions are preferred by MAS community like Object Oriented
Approaches [1] and Description Logic (DL) [10].
C. Knowledge Management

Information can be defined as a truth or data concerning particular topic or event. However Knowledge
signifies possessing information and perceiving it during practice [9]. Knowledge in human world depends on
information (which can be false or true) and also on undetermined information (which is partly false or true).
Undetermined knowledge can be described by diverse methods for example computing with words, fuzzy logic
or probability measures [18]. Several techniques are recognized to describe undetermined knowledge and can be
applied in MAS for example FIPA-SL extended language [5]; but, undetermined knowledge is considerably
complex and not instantly comprehensible particularly for the agent itself. Whenever undetermined knowledge
is used, computer systems can’t find out new knowledge by applying fundamental logic theory in current
knowledge base. This situation is called knowledge inconsistency [20].

For this reason we discuss just determined knowledge describing reliable information. This kind of
information are organized and represented by ontologies. This option allows to agents to perceive knowledge
and to deduce further knowledge from available ones in a simple and unambiguous way. It seems that the use of
such knowledge is adequate for very restricted applications domain; however by analysis of distinct applications
[10], more precisely where experience KM is required, the concentration on determined knowledge is more
appropriate than the undetermined knowledge.

Knowledge in the human world is shared between users and they use some techniques to understand and
classify this knowledge by detecting the synonymous words, applying same vocabulary or producing central
repository for example database, library or knowledge base. Most contemporary knowledge systems are
centralized and use ontology [12], [17].

We propose a combination of centralized and distributed methods. In this hybrid approach, Agents have a
direct access to local repositories where they can obtain needed knowledge otherwise they have to solicit other
agents to supply them with desired knowledge which is managed just by a specific agent. This methodology
incorporates centralized and distributed approaches thus it is remarkably advantageous for KM systems.

In this work, we will discuss the following points:
− Conception of agent framework by incorporating ontology to knowledge model.
− Description of agent’s generation approach by using the proposed agent framework.

Definition and elaboration of Agent library which is used for agents’ construction with the suggested
methodology (with the expectation to introduce agents to conventional systems).

III. AGENT FRAMEWORK

An example of a task diagram describing the locate victim task is shown in Fig. 3. Actions within each state
are executed sequentially and are written as functions. Locate victim is a reactive task, which means that it is
initiated whenever a search (area) message is received from the find area to Search task. After the task receives
a search area message, it plans a route to obtain to the area and then goes about executing the route. If route
execution fails, the task re-plans the route and updates the map.

There are three fundamental architectures types: behavioral, BDI (Belief Desire Intention) and reactive. The
hybrid approach which combines the three architectures types, is the more applied in the existing systems. In
this paper, we focus on behavioral style by developing an agent repository to implement agent operations.

As first step, we define formally agent repository using DL and after that we explain how RDF-OWL can be
used for its design and implementation. The main element in the proposed framework is event. This framework
is an improvement of ontology model used in JADE (concept and predicates). As we mentioned in [1], JADE
ontology model has some shortcoming.

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 53

A. Formal Agent Knowledge Model Specification

In this section, we describe the agent model by applying DL. Fig. 2 represents formal graph definition. Our
model contains eight principal features: resources, actors, operations, tasks, domain, contexts, events and agents.

The set of the existing resources in the agent context is described by Resource class. The sub-classes
corresponding to different sort of resources are represented by the model specialization. The Actor is the main
sub-class of Resource.

Actoractor

ResourceActor

∈
⊆
}{

Actor instances can perform operations {operation} which are instances of Operation class.
Operation operation ∈}{

Depending on the application domain, Task class stands for problems or performed works or works require to
be performed in the agent context.

The ontology extension in the system realm is represented by Domain class which is the super-class for the
entire extensions set. Context class merges the environments of task, actors, resources and operation classes.

Domaindomain

Contextcontext

Resource)DomainOperation(TaskContext

ContextResource

ContextDomain

ContextOperation

ContextTask

∈
∈

∪∪∪⊃
⊆

⊆
⊆

⊆

}{
}{

Domain is a crucial task attribute. It denotes the beliefs associated to the application field. As well known,
these relationships are helpful for selecting suitable KM algorithms used to update the resource and actor
context.

})({. domainTaskdomainContextTask ∩⊆

Fig. 2. Ontology for Knowledge Modeling

System events are represented by event class. {event} is an instance of event class which describes {operation}
performed on special {resource}, defined by {context}, by {actor}. The actor.Event, operation.Event,
context.Event and resource.Event are event class attributes.

Eventevent ∈}{

∩∩⊆ })({.})({. resourceEventresourceactorEventactorEvent

})({.})({. operationEventoperationcontextEventcontext ∩

Agent class symbolizes a specific Actor type. This class describes agents in the system.

Ontology Class Individual Ontology Inheritance Relation

Property Relation Cardinality Multiple *

is a

*

Event

Operation Context

Task

Domain

is a is a

is a

*
*

*

*

Agent

Actor

Resource

is a *

*

*

is a

io
Update

io
Create

io
Delete

io
Query

io
Inform

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 54

Agentagent

ActorAgent

∈
⊆
}{

Software agents execute standard operations which are well specified. These operations define different kind
of interaction between agents including ACL messages (INFORM and QUERY-REF). Events of this type are
produced whenever an inter-agents interaction is executed.

OperationQueryInform ∈},{

But if operations like resources deleting, creating or updating are executed, the system will save and assess
events representing those operation types.

OperationDeleteUpdateCreate ∈},,{

Actor class contains two essential attributes which are Resource.Actor and Context.Actor. The
Resource.Actor attribute represents set of resources used by the actor. These resources are consequences of
actor’s plans or goals. Thus they depend on actual actor’s context. The Context.Actor defines actual context of
the actor. Concerning system context, it can be deduced from saved events which illustrate external context state.
Therefore, new pertinent events influence actor context or the external system context.

Algorithms for updating resource and context are defined as follows.
ResourceactorActorContextresourceActorResourceActor ∩∩⊆ })({.})({.

}){})({.};{(})({. eventactorEventActoreventactorActorContext f c
∈∀=

}))({.(})({. actorActorContextresourceActorResource f R
=

These algorithms represent the system brain. If these algorithms are modified in the future, this model allows
obtaining more suitable results by utilizing exactly the same data and framework: Since all events are stored, we
can describe the context in any instant from past and treat it afterward from the begging with upgraded
algorithms to update the resource and context. This is the strong point of our model.
B. Knowledge Sharing and Exchange in Defined Architecture

Centralized approaches are, today, frequently employed for KM system construction. Behind the world
distributed we assume all MAS. We believe that each application needs a specific approach and none of these
approaches is classified as the best. In the paper we represent how to employ both distributed and centralized
and we leave the choice to the developer of KM system to select the appropriate approach.

To conceive the KM system, we adopt a hybrid approach. The KM system must contain central points (like
libraries, internet portal, etc.) in which agents can obtain/share knowledge or use ontologies. This situation is
called blackboard approach [20] there is one central location used by all agents to write their knowledge which
are accessible by each agent. Similarly, we suggest designing a unique repository supported by the proposed
agent knowledge framework. In this case, we authorize knowledge sharing between agents. This is very useful
specifically if we consider collaborative agents. Thus, structured repositories are the best choice [8], where
information sharing among agents can be achieved by using a query language for RDF. Common shared
ontology (which is one of the blackboard approaches) is advantageous for collaborative agents as they must
understand the used worlds in the same way. Consequently, they use exactly alike ontology during their
communication. FIPA ontology specification defines the standards for ontology agents [6].

In FIPA definition, important are two principal messages between agents or precisely actors: informs and
requests. In the former, an actor informs the other actor about something. In the later, one actor requests another
actor to perform something or for something.
− If informed: The actor modifies its repository or its knowledge to be update.
− Up request: The asked actor asks/explores (optionally modify) its repository or its knowledge.

The interactions execution produce events and when an actor receives an event, it updates its specification
(context as well as resources) by performing described algorithms A

NewC and A
NewR .

IV. APPROACH DESCRIPTION

The proposed approach combines various portions of several approaches. Principally, it is similar to
CommonKADS. But this methodology does not work with any ontologies, knowledge description or modeling
tool. CommonKADS methodology consists of two basic steps:
− Knowledge Specification containing three other sub-specifications: Task Specification, Agent Specification,

and Structural Specification.
− System Design. We focus on Multi Agent System.

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 55

OWL ontology is used for knowledge specification which is modeled in the editor of Protégé ontology.
Consequently, our approach for modeling knowledge is comparable to [16]. Modeling ontology with Protégé
illustrates models of CommonKADS. System design is based on MAS CommonKADS, AUML and UML.
A. Agent Modeling and Ontology Creation Approach

The three models of CommonKADS are used as the starting point for knowledge modeling for an application:
Task Specification, Structural Specification, and Actor Specification.
1. Task Specification: Describes the important processes, operations and tasks of the actors. Domain is the more

significant attribute of the task. Usually, tasks are associated to a number of resources or other entities in the
domain and these relations are needed to describe algorithms which update the context of the actor and
resources.

2. Structural Specification: Describes the application context and the actors’ context. In this manner the
description of resource attributes requires to be enhanced with additional type of resources like service,
contact, item or document. We extend the domain attributes with all particular features of the domain or
application (resources are included), which describe problem area. Thus they are used by actors in task
accomplishment or decisions making. The resources are treated as outcomes of actor goals and should be
described also. In general outcomes of actor’s goals can be seen as resources for example in auction agents
(sold items) or hunting agents (locate documents). Entities characteristics and their relations are established as
a main step of our model.

3. Actor Specification: Describes actors executing operations and tasks. The actor models a software agent, a
human or any object executing operations which is under the system. Actor’s context is the more significant
attribute in the actor specification. It specifies the actual resources and context of the actor. Consequently, we
define two algorithms for updating the actor context and resources.

),(A
Old

A
c

A
New CefC =

),(A
Old

A
NewR

A
New RCfR =

Once the modeling step of entities, attributes and their relationships is completed, we define the needed
ontology which will be improved iteratively to contain all required entities. The model improvement needs to
check if the aggregation of actors, operations and resources are perceived as events also if the proposed
ontology entities are able to deduce all events. The model output is knowledge model that includes:

− Two procedures for updating the resources and context of each actor (A
NewR , A

NewC). Usually procedures are
identical or equivalent.

− Ontology elaborated using Protégé.
B. Agent Based System Design

Proposed system methodology use 3 UML diagrams:
− Class Diagram: Depicts the classes within the model. Each agent type is described by a class. Classes have

attributes (member variables), methods (member operations) and relationships with other classes.
− Sequence Diagram: Shows the communications between objects and interaction with external systems (e.g.

sensors, Graphical User Interface or other interfaces) in the sequential order that those interactions occur.
Communications among agents illustrate ACL message type (i.e. Query, Inform). An auxiliary table is
attached to a diagram to describe the type of each message.

− Use Case Diagram: Overviews the usage requirements for a system. It describes the behaviour of the target
system from an external perspective. In MAS, each agent is represented by use case diagram. As
consequence, the developers and designers can predict the intended system behaviour.

V. DESIGN OF AGENT SOFTWARE LIBRARY

In this section we define the proposed library which is supported by the Jena library and the JADE agent
system. The library includes set of functions which are missed in modern agent architectures like JADE [9].
Library contains three classes which are repository, message and ontology and represented in Fig. 3 with UML.

The class Message holds required functions for models transformation to the XML/RDF and also ACL
messages generation. A sub-set of those functions are employed for XML-RPC conversation.

The class ontology contains fundamental attributes concerning the proposed ontology and OWL ontology.
The class repository is responsible to manage, save and charge the agent repository using models such as

OWL or RDF. For management, Jena library is employed. An OWL file elaborated in Protégé is loaded in the
repository. This file will be changed into ontology model used by the repository. This repository is saved in an
OWL file, in a database tail (e.g. MySQL) or in other Relational database supported by Jena. This database

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 56

model allows to an agent to move between computers without transferring its repository. It only requires disjoin
from current repository and link after execution begins on a distinct node when a mobile agents’ use is needed.

Fig. 4 displays an agent library behavior diagram showing the library usage. This library can be used to
develop a JADE agent to prop OWL model based on Jena library. Moreover, now it is easy to incorporate the
XML remote procedure call functions for knowledge description or events reception like RDF messages from
systems in external environment by using the proposed ontology. In addition, it permits interaction among
agents supported by RDF/OWL.

Fig. 3. UML Classes of the Library

Fig. 4. Agent Library Behavior Model

VI. CASE STUDY

This example illustrates the application of the proposed agent library. In this case, a simple ontology is
defined in Protégé and there are two agents:
− Query Agent (QA)
− Reply Agent (RA)

The two agents utilize the identical ontology however with distinct instances. In Fig. 5, we observe that QA
maintain information about various resource kinds (like Computer, CD and Book) however no instances of that
resources are saved in its repository. Fig. 6 shows the RA repository containing set of resource instances. In this
case the model includes three different computer instances: com1, com2 and com3. QA should look for the
resource type selected by the user. The user chooses, for example, a computer in the QA interface. The resource
type is sent to QA agent who creates a query message and sends it to the RA. The QA invites the RA to reply it
all instances existing in its repository. The RA executes the query on its repository. The result is sent as different
ACL inform messages containing the RDF specification of desired resource. RA generates events and saves it in
its repository mentioning that resources were passed to QA. Thus RA conserves information concerning the
external context. When an ACL-inform message is received by the QA, it keeps its context into its repository.
Events concerning received resources are stored in QA repository. It also appends references to answered
resources to the QA instance resource attributes. When a user asks for XML format in the QA interface, the QA
instance from the QA repository is displayed in the XML style where you can observe resources which are in
this time included in the QA repository.

Jena
Library RDF/OWL Model

Other Agent User

JADE Agent

Presentation

External System

Ontology
+ owner:
+ Base:
+ RDF:
+ OWL:
+ RDFS:
+ RDQL:
+ RDQL_using:

Repository
− Model
+ Repository (File, agent)
+ NewModel ()
+ getModel ()
+ getBase ()
+ RepositoryToOWL
+ inference
+ removeModel

Message

+ addAttributes
+ newInformMessage
+ newQueryMessage
+ getXML
+ ModelToRDF
+ resourceToModel
+ resourceToRDF

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 57

Fig. 5. QA Ontology-Protégé Screenshot

Fig. 6. RA Ontology with some Resource Instances

A. Usage of Defined Methodology

Here we present how proposed methodology is employed in the case study design and implementation. In this
section agents repository models as well as knowledge model with brief summary are described to illustrate
explicit example on proposed methodology. Fig. 7 represents the knowledge model and extends abstract
knowledge model. Model is enhanced just by resources like Operations (e.g. sell, buy), CDs and books.

Fig. 7. Simple Knowledge Model

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 58

Event

Action Resource Actor

Goods Computer Agent

CD Books QA

is a is a is a

is a is a io

*
* *

*

is a

Fig. 8 represents the knowledge model of QA. It includes just one extra instance defining itself. When
conversation begins, model is changed and extended with events summarizing the taken operations history also
QA gent resources and context are modified as stated in the equations of A

NewR and A
NewC .

Fig. 9 shows the knowledge model of RA. It includes instances defining itself and other resources such as
CDs or books. When conversation begins, the model is changed and extended with events summarizing the
taken operations history.

The more important portion of the actor model is the description of the A
NewC and A

NewR algorithms. We
present here only QA algorithms. RA just replies a wanted MySQL query however in a real situation where the
QA buys items from RA we should define these algorithms for the both. The Algorithms are illustrated as
flowchart for understandability reason. In fact they are written in Java.

To update the QA context, the A
NewC algorithm transfers all received resources to the recent context.

Whenever a query event is created, the context is cleaned out (e.g. Fig. 10).

The A
NewR algorithm for QA resources habitually empties the resources list and fills it with a copy of the

complete context (e.g. Fig. 11).

Fig. 8. Knowledge Model of QA

Fig. 9. Knowledge Model of RA

Event

Action Resource Actor

Goods Computer Agent

CD Books RA

is a is a is a

is a is a io

*
* *

*

is a

CD1 CD2

io io

com1 com2

io io

com3

io

Book1 Book2

io io

Book3

io

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 59

Insert (c,Actor.context)

True

 Start

c Next

Actor.eActor ←

True

False
c ≠ null

False

event(e) read

se.resourcec ←

END

False
e.Action = Inform

True

Remove (Actor.context)

e.Action = query

Fig. 10. Update Context Flowchart

Fig. 11. Update Resources Flowchart

B. Definition and Design

In this section, we draw set of UML diagrams to illustrate the proposed methodology explicitly. Fig. 12
describes a use case diagram for QA. On Fig. 13 presents another use case from the RA perspective where the
RA is the system border.

With set of use cases (one use case by an agent kind), a developer can describe a system behavior and
manipulation in clear way.

Sequence diagram describes communication between external systems and agents (e.g. Fig. 14). In order to
communicate the agents use ACL messages (Query or Inform).

True

 Start

r Next

False
r ≠ null

context.Actorr ←

END

Insert (r,Actor.resources)

Remove (Actor.resources)

Read Actor

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 60

Fig. 12. QA Use Case Diagram

Fig. 13. RA Use Case Diagram

Fig. 14. Sequence Diagram

QA Interface

searchGood (type)

query_ref (type)

Inform (good_list)

QA RA

returnResults (): goods

Search Goods

Request

Get Results

Repository

Obtain Results

<< uses >>

<< uses >>

<< uses >>
UserRA

Request Goods

Return Goods

Repository Agent

<< uses >>

<< uses >>

QA

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 61

VII. CONCLUSION

The paper illustrates the application of the semantic web issues in MAS. We have proposed an agent
knowledge model. This model can describe the external context of the agent, its context and resources. We have
designed algorithms for updating the model while the external context evolves.

The proposed agent framework and model and can be implemented and applicable in several Knowledge
Management domain.

The current work affects various domains in computer sciences.
− Agent Library: This paper presents the implementation of the proposed model and the agent framework. A

significant advantage of the methodology is in using the semantic web outcomes to MAS. The application of
this library allows the agent society to use models based on OWL/RDF in MAS and also to link MAS with
commercial technologies and to express explicit and formal knowledge to the users.

− Agent Repository Model: The main components of the model are actors, resources and events. The usage of
this model guides designers to deal with required modeling expansions. The model explicitly describes the
application as well as the actor context.

− Methodology Model: The suggested methodology uses current system design and KM approaches. Its
significant enhancement resides in usage of current tools and approaches for agent modeling which makes
easy the application of this model.
The proposed model, architecture and library can speed up the translation from scientific outcomes to

industrial application.
REFERENCES

[1] Caire, G.: JADE Tutorial: Application Defined Content Languages and Ontology, 2002. http://jade.cselt.it/
[2] Cui, Z., Jones, D., O'Brien, P.: Issues in Ontology based Information Integration, Proceedings of the IJCAI-01 Workshop on

Ontologies and Information Sharing, Seattle, USA, August 4-5, Vol.47, pp.141-146, 2001.
[3] DARPA Agent Markup Language (DAML), 2002. http://www.daml.org/
[4] IEEE Foundation for Intelligent Physical Agents (FIPA), 2012. http://fipa.org/specs/ fipa00097/SC00097B.pdf
[5] FIPA SL Content Language Specification, 2001. http://www.fipa.org/ specs/fipa00008/XC00008G.pdf
[6] FIPA Ontology Service Specification, 2001. http://www.fipa.org/ specs/fipa00086/XC00086D.pdf
[7] FIPA ACL Message Structure Specification, 2000. http://www.fipa.org/ specs/fipa00061/XC00061E.pdf
[8] Kuntz, R., Matta, N.: Knowledge Management and Organizational Memories, Springer Science and Bussiness Media, New York,

August 1, 2002.
[9] Laclavik, M., Balogh, Z., Gatial, E., Habala, O., Nguyen, G., Hluch , L.: e-Collaboration and Knowledge Sharing based on Text Notes,

Informatika 2005, Bratislava, Slovakia,2005.
[10] Lambert, S.: Deliverable D4: Environment and Requirements Analysis, Pellucid Consortium, November 2003.
[11] Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Computing, A Roadmap for Agent Based

Computing, Agentlink community, 2003.
[12] Motta, E.: Ontoweb Consortium, Universidad Politécnica de Madrid, July 2004.
[13] OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Object Management Group, OMG Available Specification,

November 2007.
[14] OWL Web Ontology Language Overview, OWL Working Group, W3C Recommendation 10 February 2004.

http://www.w3.org/TR/owl-features/
[15] Resource Description Framework (RDF), RDF Working Group, 2004, http://www.w3.org/RDF/
[16] Schreiber, G., Crubezy, M., Musen, M.: A Case Study in Using Protégé 2000 as a Tool for CommonKADS, EKAW '00 Proceedings of

the 12th European Workshop on Knowledge Acquisition, Modeling and Management,pp. 33-48 Springer Verlag London, UK, 2000.
[17] Stuckenschmidt, H.: Ontology-Based Information in Dynamic Environments, Proceedings of the Twelfth IEEE International

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'03), 2003.
[18] Wang, P.: Computing with Words, Wiley Series on Intelligent Systems (Book 3), Wiley-Interscience, 1 edition, 748 pages, 2001.
[19] Willmott, S., Thompson, S., Bonnefoy, D.: Agent Cities: Towards Dynamic Value Creation in Online Open Environments, IST

Conference Milan, Italy, 2003
[20] Wooldridge, M.: An Introduction to Multi Agent Systems, Wiley, 2nd edition, 484 pages, 2009.J. Padhye, V. Firoiu, and D. Towsley,

“A stochastic model of TCP Reno congestion avoidance and control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-
02, 1999.

Zina Houhamdi et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 62

	Ontology-based Knowledge Management
	Abstract
	Keyword
	I. INTRODUCTION
	II. BACKGROUND
	III.AGENT FRAMEWORK
	IV.APPROACH DESCRIPTION
	V. DESIGN OF AGENT SOFTWARE LIBRARY
	VI.CASE STUDY
	VII. CONCLUSION
	REFERENCES

