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Abstract—This article presented the design of two filters SIW (Substrate Integrated Waveguide) in two 

different bands. Their conceptions were made by two different topologies. The first SIW filter with 
circular inductive post in the band [33-50] GHz on an RT / Duroid 5880 substrate permittivity 2.2, the 
simulated results of this filter have shown that the insertion loss lower than -0.4 dB within 3.5% 
bandwidth around 41.7 GHz and the return loss is better than -15 dB between 41.1 GHz and 42.4 GHz. 
The second SIW filter with iris in the band [50-75] GHz on an NY9217 (IM) substrate permittivity 2.17, 
the simulated results of this filter have shown that the insertion loss lower than -0.35 dB within 19% 
bandwidth around 62 GHz and the return loss is better than -15 dB between 60 GHz and 66.3 GHz. The 
compatibility with planar circuits is provided via a specific microstrip transition (microstrip tapered 
transitions). 

Keyword-Rectangular Waveguide, Substrate Integrated Waveguide, Microwave Filters, Transition, 
SIW-Microstrip Technology  

I. INTRODUCTION 

A High selectivity, low insertion loss, small size and limited cost are so many essential questions in the 
design and the manufacturing of microwave circuits. Unfortunately, the traditional technology, either planar or 
non-planar, is incapable to provide all these characteristics at the same time. In fact, the rectangular waveguides 
present low insertion losses and good selectivity. However, their production is costly and their integration with 
other planar circuits requires a specific transition. 

For planar circuits have a low quality factor, but they have a good compatibility and low cost manufacturing. 
These constraints led us to use the SIW technology to combine the respective advantages of the technologies 
previously mentioned. 

This concept associates the use of planar technology microstrip and the functioning of cavities in which are 
going to exist volume modes [1]. Technically, cavities are included in the substratum and are delimited for the 
upper and lower faces by the metal plane and for the side faces by rows of metallic holes. This vias have a 
diameter and spacing small to appear as electric walls [1-5]. However, the change of electrical walls by metallic 
holes implies that certain modes cannot resonate. 

The SIW (Substrate Integrated Waveguide) structures have been of great interest and with a specific 
transition that this technology is compatible with some planar technologies [6]. 

However, the SIW has been applied successfully to the conception of planar compact components for the 
microwave and millimeter wave applications. Such as filters [2, 5, 8, 9, 11], numerous applications were made 
on SIW filters for millimeter and sub-millimeter [5, 8, 9, 11, 12]. The results show that the quality factor greater 
than what can be obtained with planar technology. 

II. DESIGN OF THE SIW TECHNOLOGY 

A substrate integrated waveguide (SIW) is made of metallic via-hole arrays in the substrate between top and 
bottom metal layers replacing the two metal sidewalls are shown in Fig. 1. 
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The microwave band-pass filters are presented by an equivalent circuit [7]. This circuit consists of impedance 
inverters and parallel resonant circuits. The number of the resonators or the order of the filter is determined by 
equation 4 applicable in the case of Chebyshev synthesis [7].  
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Where n is the order of the filter, LAs is the level of out-of-band rejection in the pulsation Ωs and LAr is the 
maximal amplitude of the undulation. Ωs is the frequency of rejection high, found by the equation of the 
transformation of frequency [7], whose cut-off frequency is Ωc=1 rad/s. The resonators in equivalent circuit are 
modeled by inductance and capacitance in series [7]:                  
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Where FBW is the relative bandwidth of the filter, ω0 is the center angular frequency and Z0 is the source 
impedance. The coupling coefficients between resonators are provided by impedance inverters Ki,i+1(0≤ i ≤n)  
[7].                 
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On the other the waveguide filters are formed with resonator distributed elements interconnected by 
impedance inverters or admittance.  

The distribution of the electric field in the SIW has characteristics of dispersal similar to the mode of the 
waveguide. The conception of filter SIW uses the same process the conception of a filter waveguide. The 
equivalent circuit of the band-pass filter SIW is presented by impedance inverter and phase shifts [8]. The 
impedance inverters Ki,i+1(0≤ i ≤n) are given by the formulas in [9, 11]: 
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Where gi(0≤ i ≤n+1) Are the coefficients of Chebyshev, Ωc=1 rad/s is the cut-off frequency. ωλ is the fractional 
bandwidth [9], defined by the guided wavelength λg1, λg2 for cutoff frequencies f1 low and f2 high bandwidth, the 
guided wavelength λg0 of the center frequency f0:   
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In hybrid networks inverters are a broadband [9], the equivalence relations with the inverters are represented 
by the following relationship 13, as in [11]:  
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The phase shifts or the electrical lengths of the resonators are determined in [9]:     
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