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ABSTRACT 

Economic load dispatch (ELD) is the main optimization task in power system operation. Minimizing the 
fuel cost by optimally setting the real power outputs from generators is the objective of ELD problem. In 
this work, ELD problem is addressed by considering three different cost functions. Real power 
generations are adjusted for minimizing the fuel cost by using flower pollination algorithm (FOA). This 
algorithm works on the basis of pollinating behavior of flowering plants. Unlike the other nature inspired 
algorithms, it follows only the levy flight mechanism for generating the population for the next 
generation. Being free from large number of parameters, the algorithm works well and there is no much 
difficulty in tuning to suit for different problems. The algorithm can be coded easily in any programming 
language. The proposed algorithm is tested on the standard IEEE-30 bus system and the results are 
compared with those of the other algorithms reported in the literature.  The results are found to be 
improved and encouraging. 

Key words: optimal power flow, economic load dispatch, flower pollination algorithm, generation cost, cost 
functions. 

I. INTRODUCTION 

Economic operation of power systems is met by meeting the load demand through optimal scheduling of power 
generation. Minimization of fuel cost is the main form of optimal power flow (OPF) problems [1]-[2]. Real 
power generations of different generators are the control variables in ELD problem. Optimal real power 
scheduling will ensure economic benefits to the power system operators and reduce the release of polluting 
gases.  

ELD primarily aims at optimal scheduling of real power generation from committed units in such a way that it 
meets the total demand and losses while satisfying the constraints [3]. Achieving minimum cost while satisfying 
the constraints makes the ELD problem a large-scale highly non-linear constrained optimization problem. The 
non linearity of the problem is due to non linearity and valve point effects of input–output characteristics of 
generating units. The objective of cost minimization may have multiple local optima. There is always a demand 
for an efficient optimization technique for these kinds of highly non linear objective function [4]. Further, the 
algorithm is expected to produce accurate results for the ELD problem.  

In the past, numerous conventional optimization algorithms are exploited for solving the OPF problems [5]. 
Major drawback of those methods is that they require smooth and convex functions for better results and more 
likely to trap into local optima. Later, evolutionary algorithms are exploited for ELD problems and improved 
results were obtained [6]-[8].  

In the last decade, several bio inspired algorithms are introduced and attempted for many engineering 
optimization problems. Some of the notable bio inspired algorithms are particle swarm optimization algorithm 
(PSO), a well received algorithm and utilized in almost all engineering applications successfully [9]-[10]. 
Firefly algorithm is another recently introduced algorithm for engineering optimization [11] that has been 
successfully used to solve the dynamic ELD problem. Theses algorithms are highly efficient and cannot easily 
trap in to local optima. In addition, they are comfortable with all types of objective functions. Researchers 
across the world are constantly working to develop still efficient algorithms by copying the behaviour of 
nature/species. Flower pollination algorithm FPA is one such nature inspired algorithm developed by xin she 
yang for   engineering tasks.  
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The efficiency of nature/bio inspired algorithms is proved to be outperforming even the evolutionary based 
algorithms. In this paper, the FPA algorithm [12] is proposed for achieving improved results in the ELD 
problem. This algorithm is with less number of operators and hence can be easily coded in any programming 
language. To prove the strength of this algorithm its performance is compared with other algorithms. 

II. ECONOMIC DISPATCH PROBLEM FORMULATION 

The objective of ELD is to minimize the total fuel cost. Total fuel cost can be calculated by using one of the 
three cost functions as discussed below.   

2.1 Quadratic cost function 

The total cost of operation of generators includes fuel and maintenance cost but for simplicity only the fuel cost 
is considered. The fuel cost is Important for thermal power plants. The cost function is assumed to be smooth 
and taken as a quadratic curve (1). 

ܨ ൌ෍ܥ௜ሺܲீ ௜ሻ ൌ෍ܽ௜ାܾ௜ܲீ ௜ା

ேಸ

௜ୀଵ

ேಸ

௜ୀଵ

ܿ௜ܲீ ௜
ଶ 																																																																																																				ሺ1ሻ 

Where NG is the total number of generation units in the plant, ai, bi, ci are the cost coefficients of generating unit 
i and PGi is the real power generation of ith unit.  

2.2 Cost function with sine term 

When a generator is with multiple valve points as is the case in steam turbines the cost curve is not smooth. The 
assumption that the cost curve function is smooth becomes invalid and the results are erroneous. The effect of 
valve points can be taken into account by adding a sine term as in equation (2). 

௜ܨ ൌ ܽ௜ ൅ ܾ௜ܲீ ௜ ൅ ܿ௜ܲீ ௜
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Where, Fi is the fuel cost of ith generator that has multistage valves in its inputs. 

2.3 NOx Emission Objective 

The minimum emission dispatch optimizes the above classical economic dispatch including NOx 
emission objective, which can be modeled by using a second order polynomial functions.  
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Economic load dispatch is subject to equality constraints like power flow equations and inequality constraints 
like generator power, voltage magnitude and line power flow. 

Equality Constraints: 
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Where PD is the demand power and PL is the total transmission network losses. 

Inequality Constraints  

Branch power flow limit: 
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Generator MVAR outputs: 
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Real power generation output: 
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III. POLLINATION IN FLOWERING PLANTS 

It is estimated that 80% of plants use pollination for reproduction. Flower pollination is the transfer of pollen 
from a male flower to a female flower. Pollination may take place in the form of biotic or abiotic. 90% of 
pollination is through insects and animals only the remaining 10 % is by wind and other natural causes. 

Biotic pollination may be of self-pollination or cross-pollination. Cross-pollination means pollination occurring 
between two different flowers, while self-pollination takes place in the same flower between its male and female 
parts. Biotic and cross type pollinations occur between flowers far away from each other hence they are 
equivalent to global optimization. As the pollinating agents like insects follow the Levy flight movement, it can 
be employed for global optimization. Abiotic and self pollinations can be thought of local optimization since it 
occurs in the same flower. 

3.1 Flower Pollination Algorithm 

Based on the concept of flower pollination, Flower pollination algorithm is (FPA) is developed. 

The following are the four rules employed to copy the pollination characteristics of flowers [12] 

Rule 1. Biotic and cross-pollination are considered as global pollination process and  

pollen is carried by a movement which obeys Levy flight movement. 

Rule 2. Abiotic and self-pollination are equivalent to local pollination process. 

Rule 3. Pollinators can develop flower constancy, which is like reproduction probability  

             and proportional to the similarity of two flowers involved. 

Rule 4. Changing from local pollination to global pollination or vice versa can be  

controlled by a probability p ∈ [0, 1]. 

For implementation of this FPA algorithm, a set of updating formulae are developed by   converting the rules 
into updating equations. In the global pollination step, flower pollen gametes are carried by pollinators such as 
insects over longer distances. 

Therefore, the mathematical equivalent of Rule 1 and flower constancy is written as 

௜ݔ
௧ାଵ ൌ ௜ݔ

௧ ൅ ௜ݔሻሺߣሺܮߛ
௧ െ  ሺ10ሻ																																																																																																																			ሻ∗ݔ

Where, ݔ௜
௧ାଵ is the solution vector (pollen) xi at iteration t, ݔ∗is the current best solution, γ is a scaling factor to 

control the step size. L(λ) is the parameter that corresponds to the strength of the pollination, which essentially is 
also the step size. Since insects may move over a long distance with various distance steps, we can use a Levy 
flight to mimic this characteristic efficiently. That is, we draw L > 0 from a Levy distribution 

ܮ ≃
ߣߨሺ݊݅ݏሻߣГሺߣ 2⁄ ሻ
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Here, Γ(λ) is the standard gamma distribution valid for large steps. i.e. for  s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 can be represented as: 
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where ݔ௝
௧ and ݔ௞

௧  are pollen from different flowers of the same plant species. This essentially mimics the flower 
constancy in a limited neighborhood. Mathematically, if ݔ௝

௧ and ݔ௞
௧  comes from the same species or selected 

from the same population, this equivalently becomes a local random walk if we draw ߝ  from a uniform 
distribution in [0, 1].Pollination may also occur in a flower from the neighboring flower than by the far away 
flowers. In order to copy this, a switch probability (Rule 4) is used through a proximity probability p to switch 
between global pollination and local pollination. A preliminary parametric showed that p=0.8 might work better 
for most applications. 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

The performance of the FPA based method is tested on IEEE-30 bus system considering three different cost 
functions.  The algorithm is coded in MATLAB 7.6 environment. A Core2Duo processor based PC is used for 
the simulations. 
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V. CONCLUSIONS 

In this work, a new bio inspired algorithm is implemented for different ELD problems. The numerical results 
clearly show that the proposed algorithm gives better results. The FPA optimization algorithm outperforms the 
other recently reported algorithms. The strength of the algorithm is proved in all the three different types of ELD 
problems. The three objective functions are entirely different in nature and require algorithms are different 
strengths and hence it can be said that the algorithm is could be suitable for different power system optimization 
problems. It is obvious from the convergence quality of FPA algorithm in different objectives, the robustness of 
the algorithm is proved.The algorithm is easy for implementation and can be coded in any computer language. 
Power system operation optimization problems can be attacked with this algorithm. Power system operators can 
use this algorithm for various optimization tasks.  
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Appendix 

TABLE A.1 : GENERATOR COST COEFFICIENTS IN CASE 1 

BUS 
NO. 

Real Power Output Limit(MW)S Cost Coefficients 
Min Max a b c 

1 50 200 0.00375 2.00 0 
2 20 80 0.01750 1.75 0 
5 15 50 0.06250 1.00 0 
8 10 35 0.00834 3.25 0 
11 10 30 0.02500 3.00 0 
13 12 40 0.02500 3.00 0 

TABLE A. 2 : GENERATOR COST COEFFICIENTS IN CASE 2 

Bus 
No. 

 

Real Power limit Cost Coefficients 
Min Max a b c e f 

1 50 200 0.00160 2.00 150 50 0.063 
2 20 80 0.01000 2.50 25 40 0.098 
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TABLE A. 3	ܰ ௫ܱ EMISSION COEFFICIENTS FOR CASE 3 

Unit i ܽ௜ே ܾ௜ே ܿ௜ே ݀௜ே ݁௜ே 
1 4.091e-2 -5.554e-2 6.490e-2 2.0e-4 2.857 
2 2.542e-2 -6.047e-2 5.638e-2 5.0e-4 3.333 
3 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000 
4 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2.000 
5 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000 
6 6.131e-2 -5.555e-2 5.151e-2 1.0e-5 6.667 
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