R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

An Instant Path Planning Algorithm for
Indoor Mobile Robots Using Adaptive
Dynamic Programming and Reinforcement
Learning

R.Karthikeyan® B.SheelaRani?, K.Renganathan®

'Research Scholar, Sathyabama University,
Chennai, Tamilnadu, India
“Centre for Research, Sathyabama University,
Chennai, Tamilnadu, India
3Department of Electronics & Instrumentation, Sri Sairam Engineering College
Chennai, Tamilnadu, India
'Karthikeyan.ice@sairam.edu.in, *kavi_sheela@yahoo.com,’renganathan.ice@sairam.edu.in

Abstract- An Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) based instant
path planning algorithm is proposed in this paper. The layout of any indoor environment is always
known. This information is converted into a binary matrix containing free space and obstacle space using
image processing system. A dynamic program algorithm translates the rough obstacles to expected
shaped obstacles so the robot is not confined in motion. A grid policy is used for value evaluation of
reward function. Value iteration draws out all possible paths from goal to target. A Q-learning algorithm
finds the best possible path from the numerous possible paths determined. A Biezer curve based
approximation is done to smoothen the discrete way points for smooth motion and determination of linear
and angular velocities for a differential drive robot. The simulation and the results show the proposed
algorithm have better processing time, less computational complexity, and instant determination of path,
compared to other existing methods.

Keywords: Dynamic Programming, Grid Mapping, Q-learning, Reinforcement Learning.
I. INTRODUCTION

With the enormous growth of mobile robots for Indoor applications in instances such as museums, Industrial
material handling, material transfer, domestic assistance and robotic competitions, use of a single robot to be
compatible and adaptable to all situations requires complex path planning and repeated programming. This
paper proposes a adaptive algorithm which gives best solution for many criteria such as time delay, travelling
distance, computational complexity, planned time of arrival, instant start and target locations changeability etc.
The algorithm aims in path planning of a mobile robot from an initial position and orientation to a goal position
and orientation without obstacle collision in a finite time. The typical way to solve this problem is splitting it in
less complex sub problems.[1,2]. The problem is divided into mapping, Value evaluation, Value iteration,
Optimal way point generation, curve connection, and navigation. Some methods require the workspace to be
two-dimensional and the object shape to be defined. The most common methods are based on road-map, cell
decomposition and potential fields[3]. another problem of these approaches is that most of them produce
polygonal line paths, and this geometric paths are not good to non-holonomic robot navigation.

Few adaptation techniques were developed to make these paths executable by robots with non-holonomic
constraints [4].In the other hand, Reinforcement Learning [5]. Is, learning what to do so as to maximize a
reward signal. The learner is not told which actions to take, but instead must discover which actions yield the
highest reward by trying them.

Il. MAPPING

The layout of the environment to be path planned is given to the controller as an image data. This image data
is converted into a binary image of 0’s and 1’s by using Thresholding technique. The obstacles which are
converted to black are assigned 0’s and the free space is assigned 1’s. The image is partitioned as a grid of 512
by 512 sizes [6]. Were the number of rows & columns is assumed equal as 512. A proposed environment [10].
as shown in fig. 1 is taken for test. The binary data is termed matrix ‘O’ as shown in fig. 2, which has the entire
environment data of the free space and the obstacle.

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1224

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

S .

0 k
0 50 100 150 200

250

300 350 400 450 500

Fig. 1. The proposed test environment with obstacles, the start & goal is indicated as S & G.

Fig.2. Binary data representation of the test environment the obstacle in black are termed as ‘0’ and the free space in white are termed as “1’.

A. Assumptions Used In Model

The environment is decomposed into 512 by 512 grids of square cells. Each cell in the grid contains node
which knows the location based on Integers as shown in fig. 3. The Start of Robot is always at the cell 1 and the
goal cell is determined with a numeric node. Obstacles are static and size of the obstacle is of regular shape
similar to the size of the cell. Only 5 movements are possible to navigate the entire environment. They are i)

Diagonal ii) Right iii) Left iv) Up v) Down as shown in fig. 4.
7 14 21 28 35 42 49
6 13 20 27 34 41 48
5 12 19 2 33 40 47
4 11 18 25 32 39 46
3 10 17 24 31 38 45
2 ° 16 23 30 37 44
1 8 15 22 29 36 43

Fig. 3. Proposed environment for test is split into equal cells of NXN matrix represented by numerical data as assigned above. Cell 1 is
always the start node.

ISSN : 0975-4024

Vol 6 No 2 Apr-May 2014

1225

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

I1l. DYNAMIC PROGRAMMING

Dynamic programming is an optimization approach that transforms a complex problem into a sequence of
simpler problems [7]. Usually imagination is required before we can identify that a particular hitch can be shed
effectively as a dynamic program; and often delicate approaching are necessary to reorganize the formulation so
that it can be solved effectively. The rawest approach to solving the problem would be to enumerate. Let us
assume the current position of the robot is at state ‘S’ and the possible actions are shown in fig. 5. N is the
number of rows and column. As we have assumed a 7BY7 grid map N is taken as 7

SN+1 S+1 S+N+1

LN O

S 44—
=

S+N-1

Fig. 5. Sis denoted by the current position of the robot corresponding to the numerical value, then an diagomnal action reaches the next
state as S+N+1. All the action and possible next state are indicated.

There is a possible case when all the next possible actions contain obstacles. This when encountered after a
search process will end up in a trap where there is no solution and the robot is trapped. A dynamic programming
algorithm is proposed to avoid this trap situation. In DP the optimal-value function Os™ of possible Obstacles
over the current and subsequent states possible against each action, is denoted by,

Os™=0s [(OR (Os:1, Os+n, Osins1)] (1)

Where ‘O’ is the obstacle matrix from binary image data. Os™ is given policy. Each iterations for all state S
finally yields an environment as shown in fig. 6 shows the contour were the portions of traps found by the DP
algorithm. After nearly 500 iterations the states containing possible trap actions are found and they are termed as
obstacles and the new matrix ‘O’ is constructed.

. | |

00

(a) (b)
Fig. 6. (a) Contour of environment before Dynamic programming algorithm. (b) Contour of environnnent after Dynamic
programming algorithm which eliminates the possible trap points.

K
L

IV. REINFORCEMENT LEARNING

Reinforcement learning is learning what to do, how to map situations to actions, so as to maximize a
numerical reward signal [8]. The learner is not told which actions to take, as in most forms of machine learning,
but instead must discover which actions yield the most reward by trying them. In the most cases, actions may
affect not only the immediate reward but also the next situation and, through that, all subsequent rewards. The
basic idea behind reinforcement is that the learning system shown in Fig. 7 can learn how to solve a complex
task through repeated interaction with the environment.

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1226

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

Actions

|

Remforcement Signal

v

Learning System

i

Environment

T

State Signal

Fig. 7. From current state to next state a reward is assigned based on the possible action determined by the learning system.:

A Value Evaluation

The value evaluation is done to construct a reward matrix ‘R’ which is a N by N matrix. The policy V" is formed
using the integer value assigned to each cell. For example if the goal state is 49 and as always the start cell is 1,

the policy is determined using
V"= [MOD ((S-G), N+1)] ==0;
V,"=[MOD ((S-G), N)] ==0;

(2)
(3)

The possible 5 actions from state S to state S' are denoted a0, al, a2, a3, a4, a5, then from current state S the

next state-action is

The reward evaluation algorithms

if V,"==0;

{
a0=S+N+1;a1=S+N;a2=S+1;
a3=S+N-1;a4=S-N+1;

}
Else V,"==0;
{
a0=S+N;al=S+N+1;a2=S+1;
a3=S+N-1;a4=S-N+1;
}
Else
{
a0=S+1;a1=S+N+1;a2=S+N;
a3=S+N-1;a4=S-N+1;
}
End
and the reward from state S to state S' are
R(s, a0) =1,
R(s, al) =0.8,
R(s, a2) =0.6,
R(s, a3) =0.4,
R(s, a4) =0.2,

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014

1227

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

Fig. 8. Reward matrix ‘R’ generated by the value evaluation algorithm. A sample reward matrix for N as 7 is shown. The Reward
matrix is of size N2XN*

The figure 8 shows the reward matrix which is a 49 by 49 matrix gives the reward value from current state S
to all possible states. The value is -1, if there is no possible action to other state and the value is 100 if the action
yields a goal state

B. Value lteration

The value iteration is done using Q-Learning algorithm[8]. It is a reinforcement learning algorithm that
attempts to learn a the state-action value Q (s,a),whose value is the maximum discounted reward that can be
achieved by starting in state S, taking an action a , and following the optimal policy thereafter. The matrix ‘Q’
which is a N by N matrix is initially initialized to zero. The algorithm is then iterated tilll the reward converges
to a error less than 0.0001. We Iteratively approximate the optimal Q-Function based on our observation of the
world.

The Q-Learning algorithm goes as follows:
Initialize the alpha and gamma parameters,
Initialize the environment rewards in matrix R based on the policy V.
Initialize matrix Q to zero.
For each episode until the error =0.0001
Select a random initial state.
For all state until goal state
Select possible actions a0 to a4 for the current state.
Using this possible action, consider going to the next state.
Get maximum Q value for this next state based onall possible actions.
Compute:
Q(sear) « Q(spar) + a x R(spa) +v x {mglx Q(serr,ac) — Q(‘st‘at‘)}
Set the next state as the current state.
End for
End episode
C. Optimal Way point generation

The matrix ‘Q’ contains the optimal value from one state to the other state. Table 1 illustrates the Q matrix
generated from a grid of 4 by 4 matrix. After execution of the Q-learning algorithm a matrix O' is constructed
with reference to O matrix this matrix is a N? by N? matrix similar to R and Q matrix. Each column of the O'
matrix consists the information of obstacle starting from 1 to N2, of the ‘O’ matrix. The matrix ‘Q’ is then
multiplied with O' matrix such that the obstacle states are eliminated from the ‘Q’ matrix. The optimal policy Is
evaluated from the following equation

7w~ (8) = arg m?xQ(.e.a) :

(4)
Starting from the state 1 the state with maximum value is selected from the table it is found state 6 yield the
maximum value and this state is taken as the next state and the optimal policy is evaluated till the goal state is
reached.

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1228

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

TABLE |
Q MATRIX GENERATED BY Q-LEARNING ALGORITHM FOR N=4.
et State | | | |

Current State. 1 2 3 1] | 7 L 10 11 13) 14| 15 16
ol 8135 o ofsase sl of ol of o of of o o o o

L; 0 HE‘H}] LI .U. Hli:'l'g. N[.'l:.’. D 0 : (1] D {I U' .ﬂ‘ .CI .‘J

o o osue] o ofsus{sa] o o o o o o o o

0 0| 0 0 0 0 0 W.:' 0| 0| 0 0 o) 0 0 0

o sooa] o o o sl o o mas/eu] o o o o o o

o] ofswose] of o o sas] ol e wal o o o o o

o o ofsu] of of o suis] of su13] o01[coos] of of o 0

of o o o o o of of o o o s o o o o

of o o o o e3 o o o se o oz sy o o

of o o o of ofsm] of o o e0a] o s0os soo6] s008 o

0| 0| 0 0 0 0 o] 90.02 0| 81-]-5 . 0 0 o IU.!SI 96_Dﬂ 100

ol o o o of o of of of o of o of o o 1o

0| 0| [} [} [} [3] [} of 0| 8117 [0 0| 8119 [} [}

ol o of o of of of of of o c0o8] o o of s o

ol o o o o o o o o o o o o o o 1o

W o of o of ol of of of of of of of o of of 100

D. B’ezier Curve Fitting

The way points generated by the Q-Learning algorithm are not smooth and motion of mobile robot
implemented through such discrete translation and rotation are discontinuous, time consuming and waste of
robot power. In order to overcome these disadvantages, many geometric curves based smooth path planning
techniques like B ezier curve [9], have been proposed. The B’ezier curve passes through the start and final
control points but not the intermediate ones, which define the start and the final orientation and the shape of the
curve.

Consider six control points, PO, P1, P2 P3, P4 and P5, they uniquely define the fifth-order B ezier curve. The
fifth-order Bernstein polynomials,

BP(\)(i=0,1,2,3,4,5) (5)

and the control points Pi (i=0, 1, 2, 3, 4, 5) defined third-order B ezier curve is expressed as

P() = (1 — M)5Py 4+ 50(1 — M)*P + 10(A)%(1 — X3P, + 10(A)3(1 — M)2P; + 5(0)*(1 — V)P, + (W)°Ps
(6)

And the velocity vector v(A) is defined as derivation of the path vector P(A) with respect to the normalized time
Aas

5 dP(\)
P(A) r!:\ Z””IPNI P,) B ()

(7)
Consequently, the curvature k()) at each point on the B"ezier curve could be calculated in terms of the first and
second derivatives with respect to 4 as

PN P,(N) — P, (A Pe(N)
(P2(A) + P2(\)r

K(A) =

(8)

The linear velocity, X, Y coordinates and angular velocity are also calculated. The Velocity are given two a
differential drive robot and the performance is measured. In this paper the simulation results are discussed

V. SIMULATION & RESULTS

The entire simulation is run using MATLAB software. The image data is read and converted to a standard
partition of 512 by 512 grids. Matrix ‘O’, ‘O’ ”, “R’, ‘Q’ are evolved using a ADPRL. The adaptive nature helps
the robot avoid trap situation. The entire process of mapping is completed in 29.835739 seconds. This time is
really a fastest solution is any path planning robot working in multiple environments. Fig. 9 shows the path
generated by the algorithm avoiding obstacles. The squares are few way points and curve smoothening is done
to reduce sharp turning. Fig. 10. is the plot when the dynamic programming is not used. The robot is trapped
into a corner and the actions do not allow the robot to return to its previous position, so that another action can
be taken. Fig. 11. Show the discrete path resulted from the algorithm before curve fitting is done. The robot
simulation is tested with different environment and found the time taken to plan even in a worst case is 48.2683
seconds. The output velocities were given to a differential drive robot and found to have the same path motion.
The lack of sensors in robot prevented in displaying results.

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1229

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

200

150

Lo

o -
e =]
; /. . 2
100 200 300

Fig. 9. Path generated by the ADPRL algorithm avoiding obstacles the squares are few way points generated but
approximated by cure smoothening

1 L - 1 1

0
0 50 100 150 200 250 300 350 400 450 500

Fig. 11. Path generated without the cure fitting algorithm, The path was in discrete steps.

VI. CONCLUSION

In this paper a adaptive method of Dynamic programming and Reinforcement learning used to readily make a
robot learn its environment on the basis of map depicted with static obstacle is studied. The robot is made to
avoid the traps which are complex consumer of memory and time is implemented. Static obstacles with shapes
assumed to be the size of a cell are only considered in this work. Simulation results show that in all cases path
has been found successfully by avoiding collision with obstacles. Only one quadrant movement is only
considered in this work. Future work is to implement multiple quadrants and dynamic obstacle of any shape is
planned.

REFERENCES

[1] Pedrosa, D. P., Medeiros, A. A., and Alsina, P. J. (2003). “Um metodo ~ de gerac,ao™ de trajetoria ~ para robos™ nao-holon ~ omicos
com acionamento diferencial. In Simposio ~ Brasileiro de Automac,ao™ Inteligente,” pages 840-845, Bauru, SP, Brazil.

[2] Latombe, J.-C. (1991). “Robot Motion Planning”. Kluwer Academic Publishers.

[3] Jung-Jun Parkm Ji-Hun Kim, and Jae Bok Song, “Path planning for a Robot Manipulator based on Probabilistic Roadmap and
Reinforcement Learning, International Journal of Control, Automation and Systems”, Vol. 5, no. 6, pp. 674-680, Dec 2007.

[4] Alsina, P. J., Gonc,alves, L. M., Vieira, F. C., Pedrosa, D. P., and Medeiros, A. A. (2002). Minicurso: Navegac,ao™ e controle de
robos”™ mov” eis. Congreso Brasileiro de Automatica " - CBA 2002.

[5] R.S. Sutton, A.G. Barto, “Reinforcement Learning: An Introduction” Bradford Books/MIT Press, Cambridge, MA, 1998.

[6] Danica Janlova “Neural Networks in Mobile Robot Motion” International Journal of Advanced Robotic Systems, Volume 1 Number 1,
2004, pp.15-22

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1230

R.Karthikeyan et al. / International Journal of Engineering and Technology (1JET)

[7]1 Ronald A. Howard , “Dynamic Programming and Markov Processes” John Wiley & Sons, 1960,

[8] C.J.C.H.Watkins, P. Dayan, “Q-learning, Machine Learning” (1992) 279-292

[91 Junwei Yu, Feng Wang; Dexian Zhang ; Lubin Weng, “Vision heading navigation based on navigation curve”, Intelligent
Computing and Integrated Systems (ICISS), 2010 International Conference Page(s):290 - 293Print ISBN:978-1-4244-6834

[10] Fengyu Zhou a, Baoye Song b, Guohui Tian , B_ezier Curve Based Smooth Path Planning for Mobile Robot Journal of Information &
Computational Science 8: 12

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 1231

