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Abstract -General process consists of a number of loops that may be of interactive or non interactive 
types. A Single Input Single Output includes less complex interactive loops when compared with Multi 
Input Multi Output processes. In this work a multiloop interactive process known to be an Octal Tank 
Process (OTP) with 8 tanks is considered that are placed one above another. The input voltages are fed 
through two motors however the two outputs are water levels of the lower tanks. Similarly four inputs are 
fed through motors 

subbaiah_nani@sify.co.in 

' '
1 2 1 2, , ,V V V V  and four outputs are water levels of h1, h2 and h5, h6. Optimized 

tuning methodology is applied to Multiple Interactive Loop Process through a Model Predictive Control 
(MPC) technique meant for calculating present and future values. Different tuning methods are applied 
to the process and response water levels of the tanks are observed. MPC can stabilize all linear processes 
effectively and efficiently, it tunes output and inputs simultaneously to provide more stable (optimized) 
output within the permissible limits of tolerance / error. It can also work with nonlinear processes under 
extreme conditions. It offers an optimized result under Predictive control “P” and Horizon control “M”, 
by tuning P and M and it is applied to OTP as a Nonlinear Model Predictive Control. 

Keyword- Nonlinear Model Predictive Control1, optimized2, OTP3, Predictive control 4, Horizon control 5 
I. INTRODUCTION 

MPC technique is more applicable for obtaining optimized performance and is attractive as it offers feedback 
strategy for linear processes. This same method can be applied to nonlinear systems to obtain equally good 
response or result. This is referred to as moving horizon or receding horizon control. MPC methods use linear or 
nonlinear models, to calculate present and future values of dynamic systems. Linear MPC theory is quite mature 
and has wide ranging applications from chemicals to aerospace industries. Most of the physical systems are 
inherently nonlinear in existence because of the economical constraints and product quality in process industry. 
This requires maintaining and operating the system within the admissible operating region which is a part of the 
boundary.  

This work mainly focuses on the application of MPC techniques to nonlinear model of OTP [1], [2]. The 
basic principle of MPC is as shown in fig 1. It depicts the dynamic behavior of system over predicted horizon P 
and control horizon M and determines the predefined open loop performance objective function which needs to 
be optimized. Performance measure is obtained at time t, the controller predicts the future values by tuning for a 
value of P greater than l. MPC has two methods of approach, for non linear and linear models of OTP [4]. 
Linear MPC approaches the operating points by tuning objective function however the Nonlinear MPC 
approaches the problem without consideration to operating point by tuning the objective function for nominal 
values. 

MPC method has two ways of tuning. The first method is based on simulation of process model by adjusting 
the parameters based on process dynamics, which is approximately adjustable [5], [6]. Similarly second one is 
based on explicit derivation of formulas by considering various parameters of the process model with respect to 
dynamics. The controller design sets the prediction horizon P, control horizon M, weights on the output Q, 
weights on the rate of change of input λ, the reference trajectory parameter α and some constant parameters. 
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Fig 1 Basic principle of Model Predictive Control 

II. MODEL DESCRIPTION 
A.  Nonlinear model 

Octal tank process consists of eight interconnected water tanks and two pumps as shown in Figure 2. The 
main aim is to control the water levels in the two lower tanks using two pumps. The process inputs are v1 and v2 

1 1y k hc=(input voltages to the pumps) and the outputs are  and 2 2y k hc=  (voltages from level measurement 
devices).  

where, iγ  is the flow distribution to lower and diagonal upper tank, iA  is the cross-section area, ia  is the 
outlet hole cross section and ih  is the water level, in tank i respectively. The voltage applied to pump i  is iv  
and the corresponding flow is i ik v .  

The parameters ( )1 3 5 7, , , , 0,1γ γ γ γ ∈   ( )2 4 6 8, , , , 0,1γ γ γ γ ∈  are determined based on the proper setting of the 

valves prior to the experiment. The flow to tank 1 is 1 1 1k vγ , the flow to tank 4 is 3 1 1k vγ  , the flow to tank 5 is

5 1 1k vγ  and the flow to tank 8 is 7 1 1k vγ . Similarly the flow to tank 2 is 2 2 2k vγ , the flow to tank 3 is 4 2 2k vγ  , the 

flow to tank 6 is 6 2 2k vγ  and the flow to tank 7 is 8 2 2k vγ . The acceleration of gravity is denoted ‘g’. The 
parameter values for the process are given in Table 1. Mass balances and Bernoulli’s law yield the following 
model [3], [1], [2]: 

 

k - 1 k k + 1 k + 2 k + M - 1 k + P 
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TABLE I 
Parameters process values 

parameters Units Values   
   

1 3 5 7, , ,A A A A  
2cm    28 

  

2 4 6 8, , ,A A A A  
2cm    32 

  1 3 5 7, , ,a a a a  2cm    0.071 

 2 4 6 8, , ,a a a a  2cm    0.057 

 ck  V
cm

 
 

 0.5 

   g 
2

cm
s

 
  

 981 

This typical system has two finite zeros for ( )1 3 5 7, , , 0,1γ γ γ γ ∈  & ( )2 4 6 8, , , 0,1γ γ γ γ ∈ one always lies 
in the left half-plane and the other can be placed either in the left or the right half-plane depending on the valve 
setting of 1 2 3 4 5 6 7 8, , , , , , ,γ γ γ γ γ γ γ γ  . 
B. Linear  model 

Octal tank process called the 2 1× matrix Quadruple Tank Process (QTP) consists of eight interconnected 
water tanks and four pumps as shown in Figure 3. The model consists of 8 water tanks arranged in a 4x2 matrix 
format numbered in the order 1, 2 starting from the bottom row and so on till the top row. This model focuses 
upon controlling the water level of the tanks 1, 2 and 5, 6. The process inputs are v1, v2 and v1

1, v2
1

1 1y k hc=

 (input 
voltages to the pumps) and the outputs are , 2 2y k hc=  and 5 5y k hc= , 6 6y k hc=  (voltages from level 
measurement devices).  
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Fig 2. Daigram of non linear Octal Tank Process 

The parameters ( )1 3 5 7, , , , 0,1γ γ γ γ ∈   ( )2 4 6 8, , , , 0,1γ γ γ γ ∈  are determined based on the proper setting of the 

valves prior to the experiment. The flow to tank 1 is 1 1 1k vγ , the flow to tank 4 is 1 1 1(1 )k vγ−  , the flow to tank 5 is
' ' '
1 1 1k vγ  and the flow to tank 8 is ' ' '

1 1 1(1 )k vγ− . Similarly the flow to tank 2 is 2 2 2k vγ , the flow to tank 3 is 

2 2 2(1 )k vγ−  , the flow to tank 6 is ' ' '
2 2 2k vγ  and the flow to tank 7 is ' ' '

2 2 2(1 )k vγ− . The acceleration of gravity is 
denoted ‘g’. The parameter values for the process are given in Table 1. 

   It is derived at two operating points with linearized model and control of the Octal  tank process studied at 
two operating points p− at which the system is shown to have minimum phase characteristic and p+  at which 
the system is shown to have non-minimum phase characteristic. The chosen operating points correspond to 
parameter value in table 2. Mass balances and Bernoulli’s law yield the following model [1], [2], [3]: Linearised 

the model has two sets of operating points with state space equation at operating points 
0

i i ix h h= − and
0

i i iu v v= − . 
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    Here 1, 2,5,6i =  
Here the time constant is 

02i i
i

i

A h
T

a g
=

                                                              (5)
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Fig 3. Daigram of linear Octal Tank Process(2×1 matrix of QTP) 

TABLE II 
Operating Points 

Operating 
points 

Units  P−  P+  

( )0 0
1 2,h h  [ ]cm  ( )12.4,12.7  ( )12.6,13.0  

( )0 0
3 4,h h  [ ]cm  ( )1.8,1.4  ( )4.8,4.9  

( )0 0
5 6,h h

 
[ ]cm

 ( )12.4,12.7
 ( )12.6,13.0

 

( )0 0
7 8,h h

 
[ ]cm

 ( )1.8,1.4
 ( )4.8,4.9

 

( )1 2,v v  [ ]V  ( )1,1  ( )1,1  

( )1 1
1 2,v v

 
[ ]V

 ( )1,1
 ( )1,1

 
( )1 2,k k  3cm Vs    ( )3.33,3.35  ( )3.14,3.29  

( )' '
1 2,k k

 
3cm Vs    

( )4.35,4.37
 ( )4.78,5.21

 
( )1 2,γ γ   ( )0.7,0.6  ( )0.43,0.34  

( )' '
1 2,γ γ

 
 ( )0.64,0.73

 ( )0.35,0.32
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III. FORMULATION OF NMPC 
Consider the non linear differential equation for stabilizing the problem 

( ) ( )( ), ( ) ,x t f x t u t=

[9]. 

  ( )( ) 00x t x=                (6) 

( ) ( ) ( )( ),y t g x t u t=
                    

(7) 

( ) , 0u t u t∈ ∀ ≥ , ( ) , 0x t x t∈ ∀ ≥ ( ) , 0y t y t∈ ∀ ≥       (8) 

Where ( ) nt Rx ⊆ and ( ) mu t R⊆  determine the vector of states and inputs. Denotes x and u are feasible set 
of inputs and states and y is estimated or measured output. 

We assume a set of feasible assumptions i.e., x and y as follows: 
   Assume 1: In its simplest form, u and x are given by constraints of the form  

maxminu u u≤ ≤                       (9a) 

maxminx x x≤ ≤                       (9b) 

Assumption 2: The vector field ( )( ), ( )f x t u t  is continuous and satisfies ( )0, 0 0f =  at initial condition. 

Assumption 3: Equation (6) has a unique continuous solution for any initial condition in the region of interest 
and continuous manipulated input function ( ) [ ]: 0,u t M u→ and continuous predicted state function 

( ) [ ]: 0,x t P x→  

Real systems and models are mainly used for predicting the future values within the limits selected by the 
controller.  The finite horizontal open loop described above is mathematically formulated as follows. ( )tu  is 
represented as internal controller.  

( ) ( )( ), ; ,min
( )

J x t u t M P
u t  

( ) ( )( ) ( ) ( )( ) ( )( ), ; , : ,
t P t M

J x t u t T T f x t u t d t g u t d tP C t t

+ +
= +∫ ∫

                             

(10)  

 
Subject to:      

( ) ( )( )( ) , ,x t f x t u τ=    ( )( )x t x t=                            (11a) 

( ) ,x t x∈   [ ],t t t P∀ ∈ +                           (11b) 

( ) ,u t u∈   [ ],t t t M∀ ∈ +                            (11c) 

( ) ( ) ,u u Pτ τ= +   [ ],t t M t P∀ ∈ + +                           (11d) 

IV. STABILITY 
Comparing the predicted result of open and closed loop behavior is always different. An NMPC strategy that 

achieves stability independent of the choice of performance measure, cost function and constraints of model is 
desirable. We assume that the prediction horizon and control horizon if set such that ,P M≠  and P M<  will 
result in instability8. The one way to achieve stability is the use of an infinite horizon cost function, i.e., Tp

P M>

 in 
equation (10) is set at∞ . Practically as well as theoretically this may not determine the response. More 
appropriate and feasible condition is  . Similarly the model is examined under non feasible conditions, 
where ,P M= P M< . Whereas P M=  exhibits somewhat admissible response, P M<  exhibits a more 
aggressive response.

 
The input computed as the solution of NMPC optimization problem is equal to the closed loop trajectory of 

non-linear system at any given instance of time. Basic steps for infinite horizon proof are based on use of value 
functions [7], [8]. Feasibility at one sampling instance does impel for next sampling instance for the normal 
case.  

V. OPTIMIZED THEORY FOR MPC 
 The designer needs to optimize control algorithm to minimize cost and maximize performance measure. 

These depend on the system variables, which are states x, output y, tracking error e and control u. 
Describe the process state equation of nonlinear time invariant [12], [8] and [9] 
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( ) ( ) ( )( , )x t f x t u t=                                      (12) 

( ) ( ) ( )( , )y t g x t u t=                                      (13) 

Performance function:  

( ) ( ) ( )( ) ( ), , , ,
0

t f
J x t u t y t w x y u dtxyut

= ∫

         

 (14) 

Is minimized to the dynamic system which is represented as maximized performance [12] measure for 

determining control law with penalty term ( )( )h x t f  

( )( ) ( ) ( )( ),
0

t f
J h x t f x t u t d t

t
= + ∫

                  

(15) 

ft  = final time, 0t = initial time;  0t t t f≤ ≤
 

Optimal solution to optimized problem is denoted u*

( ) ( )( )* * , , , ,u t u x t P Mτ=

(t) and repeatedly solved at sampling instants t=kδ K=0, 
1, 2... for open loop control problem. Admissible optimal control law is defined for closed loop control for 
equation (6) at sampling instants 

 [ , ]tτ δ∈
            

  (16) 

The optimal value of NMPC open loop optimal control as a function of the state will be denoted in the 
following as value function 

( ) ( ) ( )( )*, , , , ,V x P M J x t u t P M=
             

(17) 

In a similar method, we obtain performance measure form, from equations (15) to (17) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
0 0

, , , ,
0 0

t P t M
J x t u t P M h x P f x t u t d t g u t d t

t t

+ +
= + +∫ ∫

         

(18) 

The admissible controls are constrained to lie in a set ;U i.e. u U∈ . We first approximate the continuous 
operation of equation (8) by a discrete system 

( ) ( ) ( ) ( )( ),
x t t x t

f x t u t
t

+ ∆ −
≈

∆                    
(19) 

( ) ( ) ( ) ( )( ),x t t x t tf x t u t+ ∆ = + ∆
                 

(20) 

Shortening the above notion 

( ) ( ) ( ) ( )( )ˆ1 ,x k x k f x k u k+ = +
  

                     (21) 

( ) ( ) ( )( )ˆ1 ,x k f x k u k+ ≈
                                 (22)

 

In a similar manner, we get performance measure form as 

( )( ) ( )( )
1

( ( ( ), ( )) )
0

N
J h x k f x k u k g u k

k

−
∑= + +
=

         (23) 

To minimize the deviation of the final state of system from its desired values, there are more analytical 
squared terms much more analytically solvable than other types. Because positive & negative deviations are 
equally undesirable, so absolute value could be used in quadratic form. 

Using matrix notation: 

( ) ( ) ( ) ( ) ( ) ( ))(1

0

NT T TJ x k Hx k x k Qx k u k Rx k
k

−
∑= + +
=                                                              (24)

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ), , , min( ( ) ( ) )
0 0

P MT T TJ x k u k P M x k Qx k u k Ru k x k Hx k∑ ∑= + +
                        (25) 
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Optimized solution for equation (25) with number of intervals     

  
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

/ 1 , / 1 , , min (( / 1 / 1 ) ( / 1 / 1 )
0 0

/ 1 / 1 )

P MT TJ x k k u k k P M x k k Qx k k u k k Ru k k

Tx k k Hx k k

∑ ∑− − = − − + − − +

− −

   (26)

 

Here if, k is present, k-1 is past, if k-1 is present then k is future. Here k is described as discrete or continuous 
function Q, H; R is real symmetric positive semi-definite n n× matrix. Q is output weighted matrix and R input 
weighted matrix. H is solution of Ricatti equation from linear standard state space equation (27) 

                                       
( 1) ( ) ( )
( ) ( ) ( )

x k Ax k Bu k
y k Cx k Du k

+ = +
= +

                                  (27)
                                          

 

( ) 1T T TH A HA A HB B HB R BHA Q
−

= − + +                  (28) 

VI. TUNING METHODOLOGY OF NMPC 
A. Prediction Horizon P 

 Different outputs will be obtained because of the input values of P, as the settling time and rise time are quite 
different. Increasing the value of P minimizes controller aggressiveness [6].  The final horizon is set to be finite 
or infinite to ensure stability. In this case, the final horizon is described based on tuning result for closed loop 
stability of control system or process.  

The Proposed new tuning methods for MPC are as specified under [5], [6]: 

P k t Tr sη η= +                                                     (29) 

( )int 1P M C kη≥ + + ±                                            (30) 

( )t P T k orpr η< <                                              (31) 

By default P = 10 is probable value of objective function, as per stability criterion P is tuned  from the various 
parameters , like, settling time st , rise time rt  , no of outputs k , higher order of process η ,  no of controllers C, 

process response time pt  , sampling time sT , delay time dt and response of rise time 60,80,90,95 w.r.t pt . P 
value is calculated as average of number of outputs. 
B. Control Horizon M  

Evaluating the value of M, if it increases in value, it tends to become more aggressive over the prediction 
horizon (M>P). This is to monitor and control the response of data from output by adjusting the manipulated 
variable. This leads to a trade-off between increasing performance and robustness of formulation of control law, 
as a default control horizon is equal to 1. Formulate control horizon without more aggressiveness and existing 
robustness of permissible computation load [5], [6]. The proposed new tuning methods are designed mainly 
based on parameter settling time st , rise time rt , number of outputs k, higher order of process η, sampling time

TS  .    

( ) ( )( )min int 2 ,int 4 1M t Ps= ±                      (32) 

( )intM kn ts=                                           (33) 

M k tr∝                                                  (34) 

sM tη∝                                               (35) 

C. Output weighted matrix is represented by Q 
The output variables are relatively weighted according to their significance in the process model. It provides 

individual significance relative to output variable, with the most important variable having a larger weight 
compared to others. Increasing linearly the weight on the upper limit of output to achieve a smooth response till 
the desired output is obtained. The elements of Q that correspond to corrected error have nonzero weight to help 
in relative prediction. Derived expression for the output weight for minimum phase also works for non 
minimum phase for the closed loop [5]. 
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Smoothness is totally based upon the output weights, expression for both non minimum and minimum phase 
will be 

1Q <                                                      (36)
 

det TQ C C≤                                         (37)
 

 Here C is output matrix of linear state space equation. 
D.  Weights on the magnitude of the inputs R  

In similar fashion, R allows to be weighted for input variable according to their relative importance. R is 
normally considered as diagonal matrix with diagonal elements of rM rM× matrix. It is referred as input 
weighting matrix or move suppression matrix. It is more convenient for tuning parameters based on parameter 
of ijr as suppression factor [5], [6] and [10]. 

E.  Weights on the rate of change of inputsλ   
This section discusses existing and new approaches for tuning the weights on the rate of change of inputs. 

Penalizing the rate of change produces a more robust controller but at the cost of the controller becoming more 
sluggish. Small value adjustments yield a more aggressive controller. Even a small change in the input affects 
the rise time and settling time [5], [6]. This is compensated by output weights 

1 Pλ η<                 (38) 

F.  Reference Trajectory parameters  
In MPC application, reference trajectory provides the necessary path to reach final desired set point [10]. It 

can be specified in several different ways. It is designed between initial value and final value between 0 1jβ≤ <

, j=1…P.  

j s sclosedloopt openlooptβ =            (39) 

0 1jβ< <                                           (40) 

VII.  SIMULATION ANALYSIS 
We discussed extensively the application of non linear processes to OTP for the tanks response by giving 

appropriate weights to the tuning system. We generated conditions that are applicable for representation with 
non linear differential equations. Responses are calculated by means of the tuning equations for optimized 
solutions of NMPC for both the linear and nonlinear models. Responses for different tuning conditions are 
plotted for step input. 

For non linear models, the responses are plotted for step input for two types of valve settings. Parameters of 
valves are as provided in table no 3, based on minimum and non minimum phase conditions. The simulation 
results of non linear model for the minimum phase and non minimum phase are as shown in figs 4, 5 and 6, 7.  

TABLE III 
Valve Settings 

( )1 3 5 7, , ,γ γ γ γ  ( )0.6,0.1,0.1,0.2  Minimum phase
 

( )2 4 6 8, , ,γ γ γ γ  ( )0.7,0.1,0.1,0.1  Minimum phase
 

( )1 3 5 7, , ,γ γ γ γ  ( )0.4,0.3,0.1,0.2  Non minimum phase
 

( )2 4 6 8, , ,γ γ γ γ
 ( )0.45,0.25,0.1,0.2  Non minimum phase

 
Response 1 and Response 2 parameters P, M, Q, λ for the non linear model of  minimum phase are calculated 

from equations 29,34,35,36, 38 and 29, 32, 36, 38.However the response 1 is defined as P= 18, M=4, Q=1, 
λ=0.0138 while response2 is defined as P= 17, M=2, Q=1, λ=0.0147. For h1 reference value is 0.00075 and h2 
reference value is 1. 
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Fig. 4. Response of lower two tanks h1, h2 of step input 

 
Fig. 5. Tuning of manipulated input 

Response 1 and Response 2 parameters P, M, Q, λ for the non linear model of non minimum phase are 
calculated from equations 29,34,35,36, 38 and 29, 32, 36, 38.However the response 1 is defined as P= 18, M=4, 
Q=1, λ=0.0138 while response2 is defined as P= 17, M=2, Q=1, λ=0.0147. For h1 reference value is 0.002 and 
h2 reference value is 1. 
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Fig. 6. Response of lower two tanks h1, h2 of step input 

 
Fig.7. Tuning of manipulated input 

Similarly for linear model of 2 1× matrix Quadruple Tank Process (QTP) responses are plotted for step input 
for two types of valve settings. Parameters of valves are as provided in table no 2, based on minimum and non 
minimum phase conditions. The simulation results of non linear model for the minimum phase and non 
minimum phase are as shown in figs 8, 9 and 10, 11.  

Response 1 and Response 2 parameters P, M, Q, λ for the non linear model of  minimum phase are calculated 
from equations 29,34,35,36, 38 and 29, 33, 36, 38.However the response 1 is defined as P= 32, M=4, Q=1, 
λ=0.0078125  while response2 is defined as P= 31, M=15, Q=1, λ=0.008064.  
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Similarly Response 1 and Response 2 parameters P, M, Q, λ for the non linear model of   non minimum phase 
are calculated from equations 29,34,35,36, 38 and 29, 33, 36, 38.However the response 1 is defined as P= 32, 
M=4, Q=1, λ=0.0078125  while response2 is defined as P= 31, M=15, Q=1, λ=0.008064.  

All the responses are plotted based on different tuning valves for both the linear & non linear models 

 
Fig.8. response of lower two tanks h1, h2, h5 and h6 of step input for minimum phase 
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Fig. 9. Tuning of manipulated input 

 
Fig.10. Response of lower two tanks h1, h2, h5 and h6 of step input for non minimum phase 
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Fig.11. Tuning of manipulated input 

VIII.  CONCLUSION 
This work provides elaborate tuning methods for octal Tank Process through Nonlinear Model Predictive 

Control with several conditions and constraints. We generated different responses for linear and nonlinear 
models with minute deviations for obtaining the steady state conditions; also stable output for nonlinear model 
of OTP is obtained. 

The 2 x 1 matrix Quadruple Tank Process (QTP) also obtained stable response for four water tanks, at the 
same time tank h5, h6 has taken more time to reach the steady state. All the possible stability conditions are 
verified based on control and predicted horizon. Proposed new tuning methods for NMPC, provides stable 
response. 
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