
A NOVEL NODE FAILURE
MANAGEMENT FOR MOBILE AD HOC

NETWORK USING ANT AGENTS
Ramkumar K.R #1

, Dr.Ravichandran C.S#2

#1Associate Professor, Department of Computer Applications, Sri Venkateswara College of Engineering
Pennalur, Sriperumpudur,Tamilnadu ,India

#2Professor & Head, Department of Electrical and Electronics Engineering,

Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
#1 ram@svce.ac.in , #2 eniyanravi@gmail.com

Abstract-The node failure management is a puzzling task in Mobile Ad hoc Networks because of its
dynamic nature. Even a single node or link failure can collapse the entire network. The source nodes are
taking all responsibilities to manage node failures in the existing systems, but a link failure could be dealt
dynamically with the help of alternative paths to deliver payloads without disturbing the source node.
The end to end delay and the population of routing packets could be reduced enormously with an
effective node failure management at intermediate level. The payload buffering at intermediate nodes
need a special attention to decide the optimal buffer size. Here we propose a novel idea to handle node
failures at run time to improve the following factors - high packet delivery ratio, low jitter effect and
optimized usage of buffer space in mobile devices.

Keywords: MANETs, Node Failure, Probability, greedy method.

I. INTRODUCTION

An extensive research work is going on routing algorithms of mobile adhoc networks. The basic standards
are DSDV[1], OLSR[3], AODV[8], DSR[4] , AntNet, ARA[11] and AntHocNet[10].The ant colony
optimization takes a lead role in routing algorithms. The payload is transmitted based on the pheromone values
calculated by forward and backward ants. The pheromone values is measure of time and queuing delay of a link
that is used to calculated the probability of goodness. The beacons (hello packets) are exchanged between
neighbours periodically to test the existence. A link fails because of various factors like low battery, barriers of
signals, rapid movement of devices and others. A Rerr (Route Error) message is sent to source node during link
failures, the source node initiates route discovery and path updating program once again from beginning. This
regular routine is a lengthy process and node failures are very frequent in mobile adhoc networks [1].
Obviously, it is required to implement an effective frame work to manage node failures at run time. The
following chapters are giving the essence of complete work. The basic algorithms and architecture are described
in second chapter. The chapter three is describing about the new node failure management and chapter 4 is
discussing about results and analysis. The conclusion and future work have been discussed in last chapter.

II. BASIC ALGORITHMS
A. Forward and Backward ants

The forward ants[10] are sent to destination at regular intervals to preserve and to optimize existing routes,
as well as to discover new routes. If the forward ant is not engaged to the current node then the node pushes its
own IP address and travels further until it reaches destination or MaxHopCount. The duplicate forward ants are
destroyed easily with the help of ant and source ids. A forward ant is converted into backward ant after reaching
the destination. The rationale of backward ant is to retrace the path of a corresponding forward ant to update
pheromone values. It uses the information stored in forward ant and travels in reverse path to change to update
routing tables to reflect the current status of network more accurately. It is forwarded via high priority queues
that are not used by regular packets.

B. Source node Algorithm

1) Payload preparation:

The new structure named Ant Payload is the combination of forward ant (travels in predetermined path) and
a payload to be transferred; in other turn an ant is embedded with payload to give routing map and to discover
newer routes in the event of node failure. The second step is to calculate the main attribute "optimal hop count"
which is 30 % of the total path length; this value is calculated to decide the number of backups that have to be
maintained in a path.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 306

-->2-->3-->4-->6-->7-->8-->9-->

` Source Destination

Fig.1. Sample Path

for instance ,if the path length is 10 and 30 % i.e.) 3 is the optimal hop count in which duplicate copies of
payload are buffered. These duplicate buffers are used to re transmit packets during the node failures.

The following algorithm infuses a forward ant in a payload and calculates OptHc, for instance

 Algorithm 1 : Payload preparation

Input : AntPayLoad[index] = Payload[index] + forwardant(unicast)

Output : Rant - Reverse ant for acknowledgment

Initialize i with zero
for each hop increment i
 begin
// Antpayload is an array, attached with forward ant and OptHc is calculated

 AntPayload[i]=attach(Payload[i]+fant[i])
 fant[i].OptHc= Ceil ((30/100)* length of link))
 rant[i]=SendPayload(AntPayload[i])

// Resend packets when Senpayload not returns success
 if rant[i].Status!=SUCCESS

 Resend(AntPayload[i])
 else

 Delete AntPayload[i]
 end
// Check for the completeness of payload delivery, resend payloads if pending any
for each Item in Payload increment i
 begin

 if(AntPayload[i]!=NULL)

 startNewTransmission(AntPayload[i])
 else
 continue
 end

2) Intermediate Node

The intermediate nodes have three foremost responsibilities

 i) Forwarding payload to neighbours

 ii) Taking backups [Buffering]

 iii) Handling node failures

The proposed algorithm states a new idea to keep buffers at intermediate nodes, these buffers could be used
to rebroadcast payload in the occurrence of node failures. The buffers will not be dumped in all intermediate
nodes but these are stored in limited 'n' number of nodes which are having alternative paths or last 'n' number of
nodes. The 'n' value is OptimalHopCount ie) ceiling value of 30 % of total path length.

1 10

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 307

C. Algorithm of SendPayload(AntPayload[i])
The working model of this algorithm is given below with a path sampling .

Input: AntPayload i th payload

Output: Acknowledgment
// Check for error free reception of data
if ReceivePayload .(Payload[i])==SUCCESS
 then
 begin
 // if payload is not for the current node then forward payload after buffering payload
 if fant[i].dst!=CurrentNodeID then
 begin
 BufferPayload[AntPayload[i]]
 Extract(fant from AntPayload[i])
 fant[i].hopcount++
//if the hop count is crossing OptHopcount then acknowledgement is sent to proper node to delete it buffers
since buffers are not going to be maintained in all nodes.
if fant[i].hopcount >=OptHc then
 begin
 // Create a backward ant i.e.) copy of forward ant i
 Copy(fant[i],bant)
// The hop count is decremented by one so that again it will come within the range of optimal hop count and
can travel further till it reaches destination.
 fant[i].hopcount=fant[i].hopcount-1
// The following code sends acknowledgement to the correct intermediate node that has the buffer. The node
is identified with the help of stack
 bant.HopCount=1
 bant.MaxHopCount=OptHc
 bant.sourceAddr=CurrentNode
 bant.destAddr=node from stack
 entry[perform pop operation for OptHc times]
 send(bant)
 Forward(AntPayload[i],Nlist)
 else
 // The forward ant which did not cross optimal hop count travels as normal forward ant towards
 destination.
 Forward(Payload[i],Nlist)
 end
 // if a payload reaches destination then send SUCCESS via res array.
 else if fant[i].dst == CurrentNodeID
 then
 begin
 res[i]=fant[i]
 res[i].Status=SUCCESS
 send res[i] to source node
// Finally Garbage collection function deletes all buffers in a path if any pending buffers exist.
 GarbageCollection(res[i])
 end
 end
 end

1) Practical Model

Step 1: Optimal hop count value is calculated Hop-count * 30/100

 Pathlength=5

 OptHc= Pathlength * 30/100=Ceil(1.50)=2

 Backup limit=2

Step 2: PL- Payload is transferred from node 1 to node 2.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 308

Fig. 1. Payload delivery from Source Fig.2. Backup Management

Step 3: PL-Payload travels further ,

 hopcount =hopcount+1 && hocount<OptHc

 Fig. 3. Second Backup Fig. 4. Backup Deletion

Step 4: After reaching 5 th node the hocount(4)>OptHc so backup is deleted in node 2.

Step 5: Maintains 2 backups at a time

 Fig 5: Garbage collection Fig. 6. Garbage collection

III. BUFFER MANAGEMENT

The function makes a backward ant to travel from current node to intermediate node which could be reached
in Optimal Hop Count limit. After reaching the intended recipient the backward ant deletes proper buffer entry
from Buffer Payload. The number of temporary buffers is limited to OptHc at any point of time in a network.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 309

A. Algorithm of SinglePathTravel (Bant)

Input: Backward ant swapped from forward ant.
Output: Delete entry from buffer.
bant.HopCount++
if bant.HopCount>=bant.MaxHopcount then
 begin
 for i starts with 1 to N then
 begin
if bant.src == BufferPayload[i] . AntPayload.src && bant. Dst == BufferPayload[i].AntpayLoad.dst
 Delete BufferPayload[i]
 end
 else
 SinglePathTravel(bant)
 end

B. Garbage Collection

It is a simple recursive call that deletes all buffers stored in between source and destination nodes, This
function is being executed when a payload reaches the destination successfully.

1) Algorithm of Garbage Collection

// It is a recursive call which delete all buffers in between destination to source
Garbage Collection(Res)
UnipathTravel (Res)
if Res.src!=CurrentNodeID then
 begin
 delete buffers
 GarbageCollection(Res)
 End

C. Node Failure Management Algorithm

During link failures a node cannot transfer payload further, So it checks the previous node for the other
possibilities. The previous node is taken from the forward ant stack that may be belonging to these following
categories

 A) It may be a source node B) It may be an intermediate node with an alternative path

 C) It may be an intermediate node which has no alternative path

Fig.7. Node failure Fig. 8. Node failure recovery

The following algorithm describes about how a node failure is handled, in the above case, the node 5 fails so
cannot proceed further and payload is sent from 4 to 6 since it has a backup. It is an intermediate setup to reduce
the overhead.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 310

1) Algorithm ForwadPayload

Input : AntPayload, neighbour list
Output: AntPayload is translated to next node without node failure.
if isFound(Nlist.NexthopEntry for Destination N)==false
 then
 begin
 // get previous node entry from dynamic stack to test the availability of backup
 newNode=pop(fant.stack)
 // if newNode is the payload originating source means . start a fresh transaction

 if newNode==SRC then
 begin
 discard(Fant)
 startNewTransmission(payload[i])
 else
 // if it is an intermediate node then try to send data from there itself.
 if (newNode has an alternative path)
 send buffered data from intermediate node
 else (if newNode has no alternative path)
 retry from previous nodes until the last backup.
end
end

IV. SIMULATION

The simulation is implemented in SWANS simulator with 100 mobile devices in 1000 m2 area with random
waypoint mobility model. The parameters coverage range, propagation delay and Ber(Bit error ratio) have been
taken from simulator defaults. The backup availability (alternative path availability) of different paths is tested
because it is important to have good number of backups to implement ad hoc node failure management. The
tested results are categorized in to 2 modules. The first module is spreading of 30 to 40 nodes in 1000 X 1000
meters square. The simulation is executed at different speeds ranging from 1 m/s to 10 m/s to calculate
throughput.

NTPA : The Number of time of alternative paths availability.

NTNAAP: Number of times non available of alternative paths

 Equation (1)

 The figure 9 shows the throughput value ranges from 0.4 to 0.6 and sometimes alternative paths are not
available too. This indicates that 50 % of success rate for buffering payload at intermediate nodes.

Fig. 9. NNMF-BAT for 30 - 40 nodes

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 311

Fig. 10. NNFM-BAT for 90-100 nodes

The graph 10 shows that how throughput reaches the value 1 when 90 to 100 nodes are plotted in the same
area 1000 X 1000 meters. Most of the time alternative paths are available so we can implement node failure
management algorithm by taking backups at intermediate nodes .

 The AODV algorithm is tested with different node failure scenario, 40 to 100 nodes have been plotted in
1000 X 1000 meters area, where node movement speed is slowly increased from 1ms to 10ms. The overall
processing from sending error message to discovering newer routes from source node is a circuitous task and
consumes more number of hop counts. The detailed simulation results show that maximum it takes 18 hop
counts, obviously it takes high end to end delay.

Fig. 12. Alternative Path Length

Fig. 13 .Alternative Path Length

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 312

The NNMF algorithm is tested in Figure 13. with different node failure scenarios, 40 to 100 nodes have been
plotted in 1000 X 1000 meters area, where node movement speed is slowly increased from 1ms to 10ms. The
overall processing: from sending error message to discovering newer routes from intermediate node during
node failure is a simple task and consumes less number of hop counts.

The following graph shows the average hop count that have been taken to discover new route when a node
fails and it shows clearly that NNFM outperforms than AODV in most of the cases.

Fig. 14. Average Hop count comparison

Fig. 15. Beacon Population

The figure 15 shows the number of route request generated to discover newer routes in the event of node
failures. It is obvious that NNFM confronts AODV in most of the cases.

V. CONCLUSION AND FUTURE WORK

The complete dependency on source node during node failure is minimized with the help of intermediate
nodes. The intermediate nodes hold buffers to retransmit payloads in the event of node failures. The optimal
number of buffers, the correct selection of alternative paths and unicast of error messages all have been given as
set of algorithms. The simulation results show the effectiveness of these algorithms. The future direction could
be the better buffering techniques and evaluation of a heavily loaded node that acts as an intermediate router for
several nodes. The performance analysis could be tested in real mobile environment.

REFERENCES
[1] Larry C. Llewellyn, Kenneth M. Hopkinson, Member, IEEE, and Scott R. Graham " Distributed Fault- Tolerant Quality of Wireless

Networks " IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 2, FEBRUARY 2011.
[2] Goo Yeon Lee and Zygmunt J. Haas, Fellow," Simple, Practical, and Effective Opportunistic Routing for Short-Haul Multi-Hop

Wireless Networks" IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1536-1276/11 2011.
[3] Ramkumar, K.R., GaneshKumar, M., Hemachandar, N., Prasadh, M.: D”HPRAAM: Hybrid Parallel Routing Algorithm Using Ant

Agents for MANETS. IJET (March 2009) ISSN:1793- 8244,1793-8236.
[4] A.S. Alzahrani and M.E. Woodward, “End-to-End Delay in Localized QoS Routing,” Proc. IEEE Int’l Conf. Comm. Systems (ICCS),

pp. 1700-1706, 2008.
[5] P. Yang and B. Huang, “QoS Routing Protocol Based on Link Stability with Dynamic Delay Prediction in MANET,” Proc. Pacific-

Asia Workshop Computational Intelligence and Industrial Applications(PACIIA), pp. 515-518, 2008.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 313

[6] R. Ghosh and S. Basagni, “Mitigating the Impact of Node Mobilityon Ad Hoc Clustering,” Wireless Comm. and Mobile
Computing,vol. 8, no. 3, pp. 295-308, 2008.

[7] Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: An Adaptive Nature-InspiredAlgorithm for Routing in Mobile Ad Hoc
Networks, Tech. Rep. No. IDSIA-27-04-2004,IDSIA/USI-SUPSI (September 2004).

[8] C.Perkins, E. Belding-Royer, and S. Das, “Ad Hoc Ondemand Distance Vector (AODV) Routing,” IETF RFC 3561, July 2003.
[9] Ben Liang, Zygmunt J. Haas "Optimizing Route-Cache Lifetime in Ad Hoc Networks" IEEE INFOCOM 0-7803-7753-2/03 2003.
[10] Guine, M., Sorges, U., Bouazzi, I.: ARA-the ant-colony based routing algorithm for MANETs. In: Proc. of IWAHN 2002, pp. 79–85

(August 2002).
[11] S. Nelakuditi, Z.L. Zhang, R.P. Tsang, and D.H.C. Du, “AdaptiveProportional Routing: A Localized QoS Routing Approach,”

IEEE/ACM Trans. Networking, vol. 10, no. 6, pp. 790-804, Dec. 2002.
[12] S. Chakrabarti and A. Mishra, “QoS Issues in Ad Hoc Wireless Networks,” IEEE Comm. Magazine, vol. 39, no. 2, pp. 142-148,

Feb.2001.

Ramkumar K.R et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 314

