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Abstract— Damping of vibrations is often required to improve both the performances and the integrity of engi-
engineering structures, e.g. gas turbine blades. In [24] some of the authors have proposed a new function to control 
the multimode vibrations of a fixed beam. In this article this methodology has been extended to a rotating cantilever 
beam. To develop an effective control strategy, and optimize the placement of the active piezoelectric elements in 
terms of vibrations amplitude reduction, a procedure has been developed and a new analytical solution has been pro-
proposed. The results obtained have been corroborated by comparison with the results from a multi-physics finite 
elements package (COMSOL) and data from other models available in the literature. 
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Nomenclature 

a 
axis position of the centre 

of the piezo plates 
R 

radius of the hub 

B 
vector control 

Sb 
cross sectional area of the 

beam 

c beam width Ta piezoelectric thickness 

C damping matrix Tb beam thickness 

d31 piezoelectric coefficient u axial displacement 

Ea 
Young's modulus of the 
piezoelectric material V 

voltage applied to the 
piezoelectric plates 

Eb 
Young's modulus of the 

beam material w 
vertical displacement 

h piezo plates length x beam axial coordinate 

Ib 
inertia moment of the 

beam 
Xi(t) 

amplitude of the i-th mode 

K stiffness matrix α, β damping coefficients 

Lb 
beam length 

ξ 
beam axial coordinate of the 

terminations of the PZT 
plates 

Ma 
piezoelectric bending 

moment ξ  
dimensionless  ξ: ξ = ξ / Lb

 

n revolutions per minute ρ density 
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M 
mass matrix φi(x) i - th flexural mode of the 

cantilever beam 

r 
percentage coupling 

coefficient ωi 
natural frequency 

I. INTRODUCTION 
The development of more efficient gas turbine engines have to consider the problems of the vibrations of the 

most sensitive components like the compressor blades.  Indeed one of the changes made to design of  modern 
gas turbine is that the compressor blades become a little thinner and, hence, slightly more efficient; however, 
this makes them more sensitive to externally induced vibrations. Not only is this vibration counter-productive to 
the overall efficiency of the components, but it also decreases the blades’ lifetime by causing high cycle fatigue 
(HCF) and subsequent material failures ([1]-[3]). To increase the blade life passive damping systems, such as 
friction damping, are typically adopted.  These systems are very effective but, in contrast to active damping 
elements, they are not able to change their characteristics depending on the system response. In the last two dec-
ades, the adoption of piezoelectric elements, has received considerable attention by many researchers for their 
potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. In fact 
they are characterized by an interesting coupling between electrical and mechanical quantities: a deformation 
appears when an electric field is applied and vice versa ([4]). More recently studies about their use in blades of 
turbomachinery have been carried out ([5]-[10]) but only few of these concern active damping.  

In particular the damping capability of piezoelectricic shunting is analysed in [5]. A bladed disk model, with 
eight blades and two collocated piezoceramic actuators on each blade, is modeled by Finite Elements Model 
(FEM). The authors have shown that it is possible to calculate the piezoelectric coupling coefficients, and the 
excitation force of a piezoelectric actuator, by using a static analysis with a specfied voltage applied to the pie-
piezoceramic actuators. The possibility to use the piezoelectric materials for active vibration control of a two-
stage, low-speed axial flow compressor has been studied by Goltz et al ([6]). A slip ring has been used to 
transmit both the actuation voltage and the strain gage signal. The tests have shown that the amplitude of the 
induced forces are enough to control the vibration amplitude in a real component. A wireless system has been 
used by Provenza et al. ([7]) to control the vibrations of a rotating plate. A rotating bearing was used to excite 
the system; the frequency of the control was identical to the excitation frequency, while the amplitude and phase 
was tuned to optimize the response. The results have shown the possibility to damp the 3rd bending plate 
vibrations. The damping performances of a passive piezoelectric damper to reduce the turbine blade vibrations 
has been used by Schwarzendhall et al. ([8]). The optimal position and size, with respect to the mode shape of 
interest, have been also investigated. A good result has been obtained with a reduction of the maximum of the 
frequency response function of 11.66 times compared to the reference blade. Finally, Choi et al. ([9], [10]) have 
shown the experimental results obtained with a system designed to control the multimode vibrations. 

However, these preliminary studies did not investigate the optimal positions of the active piezoelectric damp-
dampers as a function of the modes to be controlled. Considering that the effectiveness of the piezoelectric 
elements to damp a particular excited mode, or a multimode combination, strongly depends on their position, 
and that the excited modes can change during the time, the possibility of an active system to change the work-
configuration of the piezo-plates can increase considerably their efficiency.  In the last years the study of the 
optimal position of the piezoelectric elements, and their effect, on mechanical structures has received increasing 
attention. Typically the aim of these studies is to find the position that minimizes an objective function or 
maximizes the degree of modal controllability (see [11] and [12] for a review). Crawley, de Luis ([4]) studied 
for first the optimal position to damp a specified mode. They found that the better position for the actuators 
should be in regions of higher average strain. Other researcher ([13], [14]) found analogous results. For a 
cantilever beam Sunar and Rao ([15]), Demetriou ([16]), Bruant et al. ([17]) and Baz and Poh ([18]) have found 
that more effectiveness positions of the piezoelectric actuators are closer to the fixed end. An analytical model 
has been presented by Yang and Lee for simultaneous optimization of non-collocated ([19]), and collocated 
([20]), piezoelectric sensor/actuator placement and feedback control gain. The results have shown that this 
procedure can avoid the instability of the structural control system. Yang et al. ([21]) have studied a simply 
supported beam. They found that the optimal position for the piezoelectric plates to control one specific mode is 
within the regions separated by the vibration nodal lines.  

Barboni et al. ([22]) examined the possibility of exciting the flexural dynamics of an Euler-Bernouilli beam, 
according to a single mode. According to the results to excite a desired mode the actuator must be placed be-
between two consecutive points at which the curvature becomes zero. Unfortunately in many real cases the 
loads applied to the structures excite more than one mode and with different amplitudes. Wang et al.  ([23]) 
proposed a new controllability index to find the optimal position of the piezoelectric patches to study modal and 
multimodal vibrations. They illustrated various beam configurations with a pair of collocated piezoelectric patch 
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actuators. In Ref. [24], some of the authors of the present contribution have proposed a new function to find the 
optimal placement of piezoelectric plates to reduce the multimodal vibrations of a fixed cantilever beam. To 
support their model an experimental apparatus has been built ([25]-[26]). The results have shown a very good 
agreement between experimental, numerical and theoretical predictions. In this paper, the methodology pro-
posed by Botta et al. ([24]) has been extended to a rotating cantilever beam. The proposed analytical solutions 
have been also compared with the results of numerical solutions performed using a commercial multi-physics 
FEM package (COMSOL). Also in this case an experimental apparatus has been designed and constructed and 
the preliminary results have been reported in Refs. [27], [28]. 

II. GOVERNING EQUATIONS FOR PIEZOELECTRIC COUPLED BLADES 
In Fig. 1 a schematic of a rotating beam with the attached piezoelectric plates is depicted1. In order to control 

the vertical vibrations an electric field has been applied perpendicular to the two PZT patches. In fact, depending 
on the sign of the electric field ([29]), they will be deformed in extension or contraction. Applying two out of 
phase harmonics electric fields to the opposite piezoelectric plates, shear forces will be transferred, via the glue, 
to the beam. Crawley and de Luis ([4]) have shown that, if the plates are perfectly bonded to the beam, their 
action can be considered as concentrated at the ends of the plates and it can be modeled by two harmonic flex-
ural moments concentrated at their ends (Fig. [1]). 

 
Fig. 1: Reference configuration and action of the PZT plates 

The expression of Ma(t) has been derived in ([4]): 

( ) ( )
6a a a bM t E cT T t

ψ= Λ
+ ψ            (1)

 

with: 
31( ) ( )
a

b b

a a

d
t V t

T

E T

E T

Λ =

 ψ =
        (2) 

The parameters a and h characterize the position and the dimensions of the PZT plates (Fig. 1). The aim of 
this paper is to find their optimal value to damp the multimode vibrations induced on the beam by an external 
load. To compare different values, the tip of the beam has been chosen as a reference point. In fact all the con-
sidered eigenmodes of the rotating cantilever beam have their maximum amplitude at the tip, so that reducing its 
vibration amplitude the vibration of the entire beam will be reduced as well. If the PZT concentrated moments 
are in counter phase to the external load, the piezoelectric plates exhibit an active damping effect. The greater is 
the PZT vibration amplitude induced at the tip, the greater is their ability to damp the vibrations or, in other 

                                                 
1 In the following the PZT plates will be considered perfectly bonded to the structure, their mass and inertia moment (with respect to the 
neutral axis of the transverse section of the beam) negligible with respect to the mass and the inertia of the beam and their thickness very 
lower than the thickness of the beam 
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words, the greater is their effectiveness. Therefore, the focus of this study is: to find the values of a and h that 
maximize the amplitude tip vibration for an assigned a load spectrum, or equivalently, a spectrum provided to 
the electric field ([4]).  

The equilibrium equations are derived by applying the principle of virtual work; considering an Euler-
Bernoulli beam and indicating with δLa, δLe, δLin, the virtual work of the piezoelectric actuators, elastic and in-
ertial forces, respectively, the principle of the virtual works can be written as : 

 

δLa + δLe + δLin = 0 (3) 

Indicating with w the vertical displacement,  the virtual work of the PZT plates will be2: 
 

δLa = Ma
∂w

~

∂x
x=a+ h

2

− ∂w
~

∂x
x=a− h

2



















    (4) 

 
The variables a and h can vary within the domain identified by the following system equations: 
 

0
2

0
2

0
0

b

b

b

b

h
a L

h
a L

a L

h L

 ≤ − ≤

 ≤ + ≤


≤ ≤
 ≤ ≤

     (5) 

 

Their optimal value strongly depends on the modes that must be damped ([22]). 
The virtual work of the elastic and inertial forces can be written, respectively, as ([30]-[32]): 
 

δLe = EbSb
∂u

∂x
+ 1

2
∂w

∂x











2













0

Lb

 ∂u
~

∂x
dx + EbSb

∂u

∂x

∂w

∂x
+ 1

2
∂w

∂x











3













0

Lb

 ∂w
~

∂x
dx + EbIb

∂2w

∂x2
0

Lb

 ∂2 w
~

∂x2
dx   (6) 

 
 

δLin = ρbSb Ω2 R + x + u( ) − u + 2Ω w



 u dx

0

Lb

 +ρbSb Ω2w − w − 2Ω u



 wdx

0

Lb



−ρbIb Ω2 ∂w

∂x
− ∂ w

∂x










∂ w
∂x

dx
0

Lb

    (7) 

 

Integrating by parts the previous equations, we obtain: 

 

δLe = −EbSb
∂2u

∂x2
+ ∂w

∂x

∂2w

∂x2











0

Lb

  udx − Eb Sb
∂2u

∂x2
∂w

∂x
+ Sb

∂u

∂x

∂2w

∂x2
+ Sb

3
2

∂w

∂x











2
∂2w

∂x2
− Ib

∂4w

∂x4















0

Lb

  wdx +

+ EbSb
∂u

∂x
+ 1

2
∂w

∂x











2












u

0

Lb

+ Eb Sb
∂u

∂x

∂w

∂x
+ 1

2
Sb

∂w

∂x











3

− Ib
∂3w

∂x3














w

Lb

0

+ EbIb
∂2w

∂x2
∂ w
∂x

Lb

0

.
(8) 

 

                                                 
2 The virtual quantities are oversigned by a tilde. 
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δLin = ρbSb Ω2 R + x + u( ) − u + 2Ω w



 u dx

0

Lb

 +ρb SbΩ
2w − Sb w − 2SbΩ u −Ω2Ib

∂2w

∂x2
+ Ib

∂2 w
∂x2












wdx

0

Lb



+ρbIb Ω2 ∂w

∂x
− ∂ w

∂x









 w

0

Lb (9) 

Substituting the  (4), (8) and (9) into (3), neglecting the terms of higher order and the Coriolis effect, and 
equating the coefficients of u  and w  in the integrals, the following equations are obtained: 

 

EbSb
∂2u

∂x2
= ρbSb Ω2 R + x + u( ) − u



     (10) 

 

−Eb Sb
∂2u

∂x2
∂w

∂x
+ Sb

∂u

∂x

∂2w

∂x2
+ Sb

3
2

∂w

∂x











2
∂2w

∂x2
− Ib

∂4w

∂x4















0

L
b

  wdx =

ρb SbΩ
2w − Sb w −Ω2Ib

∂2w

∂x2
+ Ib

∂2 w
∂x2












wdx

0

Lb

 + Ma
∂w

~

∂x
x=a+ h

2

− ∂w
~

∂x
x=a− h

2



















   (11) 

with these boundary conditions for u: 
 

u 0( ) = 0

uI L
b( ) = 0










        (12) 

 

and for w: 
 

w 0( ) = 0

wI 0( ) = 0

wII L
b( ) = 0

wIII L
b( ) = 0



















       (13) 

Neglecting the axial accelerations u , which are small compared to the centripetal acceleration Ω2(R+x+u), 
the solution of the system (10), (12) yields: 

 

u x( ) =
Ω2ρ

b

E
b

− x3

6
− Rx2

2
+ RL

b
x +

L
b
2x

2









      (14) 

 

Taking into account equation (14), w is the only unknown quantity in (11). Moreover using the modal analy-
sis technique, and indicating with φi(x) the i-th flexural modal displacement of the rotating cantilever beam and 
with Xi(t) its amplitude, the vertical displacement can be approximated by: 

w x,t( ) = X
i

t( )φ
i

x( )
i=1

N

        (15) 
 

so that substituting equations  (14) and (15) in equation (11) the following vectorial governing equation is ob-
tained: 

 

M X
..

(t) + KX(t) = B a,h( )V (t)       (16) 
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where X represents the vector of the amplitudes of the modes, M and K are the mass and the stiffness 
matrices and are given by: 

 

M = M1 − M2

K = K1 − K2 − K3 − Ω2 M1 − M2( )









     (17) 

 

and B(a; h) is the vector control: 
 

B a,h( ) = M φ1
I a + h

2








− φ1

I a − h

2








,φ2

I a + h

2








− φ2

I a − h

2








,...,φN

I a + h

2








− φ

N
I a − h

2


















  (18) 

 

with M = ψ
6 + ψ








E

a
cT

a
T

b

d31

T
a

. If the Rayleigh damping is considered, the equation (16) develops into: 

 

M X
..

(t) + CX
.
(t) + KX(t) = B a,h( )V (t)      (19) 

 

with: 
 

C = αM +βK       (20) 
 

Considering the normal modes the mass and stiffness matrices become: M = I, K = ω2 where ω is the 
diagonal matrix of the eigenvalues of the beam and I the identity matrix. Assuming β = 0, equation (19) is 
simplified in the following form: 

 

X
..

(t) + αX
.
(t) + ω2X(t) = BV (t)      (21) 

 

The optimal placement for a single mode has been found by Barboni et al ([22]). Neverthless if the load 
spectrum includes various modes, with different amplitudes, e.g. gas turbine blades, to the author knowledge an 
analytical method has not yet been established. Here a new function is proposed, and the analytical results are 
compared with the numerical obtained using a multi-physics FEM package. Therefore, recalling that assigning a 
spectrum to the external load is equivalent, from the point of view of the aim of this paper, to assign a spectrum 
to the PZT applied voltage, and indicating with Ns the number of the excited modes: 

 

V (t) = Vj
j=1

Ns

 cos(ω jt)      (22) 

 

The solution of equation (21) becomes: 

X
i

t( ) = −
e

− tα
2 B

i
V

j
cosh

1
2

t α2 − 4ω
i
2







 α2 − 4ω

i
2 ω

i
2 − ω

j
2( )

α2 − 4ω
i
2 α2ω

j
2 + ω

i
2 − ω

j
2( )2





j=1

Ns

 +

−
e

−tα
2 B

i
V

j
αsinh

1
2

t α2 − 4ω
i
2







 ω

i
2 + ω

j
2( )

α2 − 4ω
i
2 α2ω

j
2 + ω

i
2 − ω

j
2( )2





+
B

i
V

j
αsin ω

j
t( )ω

j

α2ω
j
2 + ω

i
2 − ω

j
2( )2

+
B

i
V

j
cos ω

j
t( ) ω

i
2 − ω

j
2( )

α2ω
j
2 + ω

i
2 − ω

j
2( )2

 

   (23) 
An approximation form of (23) has been obtained considering that the contribution of the i-th term is 

predominant: 
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X
i

a,h,t( ) ≅
B

i
V

i
sin ω

i
t( )

αω
i

−
e

−1
2

t (α+ α2−4ω2
i )

−1+ et (α+ α2−4ω2
i )






B

i
V

i

α α2 − 4ω2
i

    (24) 

The second term of the right hand side of equation (24) represents the transient part so that if this is 
neglected, the amplitude of the displacement of the free end of the beam can be written as: 

 
1

( , ) ( )| ( , , ) |
sN

i i i b
b

ii

B a h V L
w a h L

=

φ
=

αω          (25) 

 

In the following, in order to simplify the discussion of the results obtained by the general formulation, a 
bimodal excitation is taken into account. The numbers i1, i2 indicate the indexes of the first and the second 
considered mode respectively, r (≤1) is a coefficient determining the contribution to the excitation induced by 
the second considered mode with respect to the first: r = 1 corresponds to the second mode governing the 
excitation without any contribution from the first. 

Therefore from equation (22): 
 

 V (t) = (1− r)cos(ωi1
t) + rcos(ωi2

t)      (26) 
 

Substituting equation (26) into equation (25) and introducing the function: 
 

g
i1

r,ξ( ) =
M
α

1− r

ω
i1

φ
i1

Lb( )φ I
i1

ξ( )

g
i2

r,ξ( ) =
M
α

r

ω
i2

φ
i2

Lb( )φ I
i2

ξ( )















      (27) 

 

we obtain: 


w r,a,h( ) = g

i1
r,a + h

2








− g

i1
r,a − h

2








 + g

i2
r,a + h

2








− g

i2
r,a − h

2








    (28) 

 

Indicating with ξ1 = a + h/2 and ξ2 = a - h/2, respectively, the position of the right and left ends of the piezo 
plates, equation (28) gives: 

 

w r,ξ1,ξ2( ) = g

i1
r,ξ1( ) − g

i1
r,ξ2( ) + g

i2
r,ξ1( ) − g

i2
r,ξ2( )     (29) 

 

Assigned the coefficient r, and denoting with ξ̂1, ξ̂2( )  the coordinates of the absolute maximum of 

w r,ξ1,ξ2( )  it  is possible to write: 

 


w r,ξ1,ξ2( )

max

= 
w r, ξ̂1, ξ̂2( ) = g

i
1

r, ξ̂1( ) − g
i1

r, ξ̂2( ) + g
i2

r, ξ̂1( ) − g
i2

r, ξ̂2( )     (30) 

 

Considering that gk(r,ξ) has, for all the considered values of k and r,  its positive absolute maximum at 

ξ̂1 = Lb ,  this value will be also correspond to the abscissa of the positive absolute maximum for 

g
i1

r,ξ1( ) − g
i1

r,ξ2( ) + g
i2

r,ξ1( ) − g
i2

r,ξ2( ) .  

This implies that the PZT plates should always be placed with their right edges at the tip of the beam inde-
pendently of the excited modes, load spectrum and the angular velocity, hence: 

 


w r,ξ1,ξ2( ) max = 

w r, L
b
, ξ̂2( ) max = g

i1
r, L

b( ) − g
i1

r, ξ̂2( ) + g
i2

r, L
b( ) − g

i2
r, ξ̂2( )    (31) 

 

Moreover since: 
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0 < g

j
r, L

b( ) > g
j

r,ξ( )     ∀ξ ∈ [0,Lb );    ∀j      (32) 
 

equation (31) becomes: 
 


w r,ξ1,ξ2( ) max = 

w r, L
b
, ξ̂2( ) max = f

i1
r, L

b( ) − f
i2

r, ξ̂2( )      (33) 

where: 
 

f
i1i2

r,ξ2( ) = g
i1

r,ξ2( ) + g
i2

r,ξ2( ) =
M
α

1− r( )
φ

i1
L

b( )
ω

i1

φi1
I ξ2( ) + r

φ
i2

L
b( )

ω
i2

φ
i2

I ξ2( )











    (34) 

 

Analyzing equation (33) it can be observed that the coordinates ξ̂1, ξ̂2( ) of the absolute maximum of 


w r,ξ1,ξ2( )  will coincide, respectively, with the abscissa of the absolute maximum, ξ̂1 = L

b
and minimum of the 

function fi1i2 r,ξ2( ) . The position of the absolute minimum depends on the considered coupled modes i1, i2 , the 

angular velocity n (because it influences the shape of the modes φi2 ξ2( ) ) and the modes ratio r; thus the 

optimal location of the left edges of the PZT elements can be found by solving the following system of equa-
tions: 

 

∂fi1i2 r,ξ2( )
∂ξ2

=
M
α

1− r( )
φ

i1
L

b( )
ω

i1

φi1
II ξ2( ) + r

φ
i2

L
b( )

ω
i2

φi2

II ξ2( )












= 0

∂2 fi1i2 r,ξ2( )
∂ξ2

2
=
M
α

1− r( )
φ

i1
L

b( )
ω

i1

φi1
III ξ2( ) + r

φ
i2

L
b( )

ω
i2

φi2

III ξ2( )












> 0
















    (35) 

 

The solution will provide all the local minima and the absolute minimum  will then be selected among these. 
It is worth noting that for r=0, or r=1, fi1i2

 is proportional to the first spatial derivative of the first, or the sec-
ond, considered mode respectively; hence, in these cases its absolute minimum will correspond to that of the 
individual derivative modes considered in isolation. 

III. RESULTS AND DISCUSSION 
In this section the results of the proposed analytical model, and their comparison with those obtained by the 

performed FEM simulations, are reported.  For the FEM simulations the Prestressed Analysis, Frequency Do-
main Study of the Structural Mechanics Module of COMSOL Multiphysics software has been used. The model 
considers a steel beam of 30 cm of length, 3 cm of width and 3 mm of thickness.  The radius of the hub, R, has 
been chosen to be 1 m. 

In order to consider different bimodal excitations, and focusing on the first five modes, the wavelength of the 
fifth mode has been approximately divided in 50 subintervals of 3 mm in length, so that ∆a=∆h= 3 mm. Conse-
quently 5000 different points of the {a,h} domain have been considered, each of these characterize the position 
of the applied harmonic PZT moment (Fig. 1). The frequencies of these applied moments have been chosen to 
correspond to the first five eigenfrequencies of the beam. For each of these frequencies the vibration amplitude 
of the tip of the beam has been calculated, while the amplitude to a their linear combination has been obtained 
by superposition of the previous responses. For every combination, the optimal position of the PZT elements has 
been chosen to be the one which corresponds to the maximum tip vibration amplitude. This procedure has been 
repeated for every considered angular velocity. Before analysing the results, it must be observed that the func-
tion fi1i2

is the sum of two terms: the first relative to mode i1 and the second relative to mode i2 (see equation 
(34)). For low values of r the first prevails; as r increases the contribution of the second considered mode, i2, 
increases until it becomes dominant. Therefore, it is expected that the absolute minimum of fi1i2

 varies from the 
absolute minimum obtained for mode i1 to the absolute minimum of mode i2 following a path that depends on 
the considered modes. Vice versa, as demonstrated above and also discussed in [24], there is no question about 
the position of the absolute maximum: this is always at the tip of the beam. In our model the computed absolute 
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minimum and maximum correspond, respectively, to the optimal placement of the left and right terminations of 
the PZT plates to be chosen in order to obtain the optimal damping of the considered bimodal combinations. 

The first example results relate to the study of the coupling between the first and the second mode; Fig. 2 plot 
the function f1,2 , for different values of r and n. The results for the optimal positions are summarized in Fig. 3. 

The red curve represents the positions of the absolute maximum (see Fig. 3 (b)) and, as expected, they are in-
variably at ξ2 =1; however the positions of the absolute minimum depend on r and n (see Fig. 3 (a)). For r=0 
the two computed locations corresponds to the optimal placement to be used to damp the first mode (see eq. (26) 
and [22]-[24]). The change of the shape of the first mode with n does not affect the positions of the extreme val-
ues of its first derivative ([33]): this suggests that using piezoelectric plates that cover the entire beam, will in-
variably be the optimal solution if the aim is to damp the first mode of vibration. Otherwise the influence of the 
angular velocity of the shaft on the position of the absolute minimum of the first derivative of the second mode 
(see [33] and Fig. 4), implies a change of the optimal configuration, to damp the second mode, with n (r =1 in 
Fig. 3 (a)). Moreover, the results reported in Fig. 3 (a) also show that for values of r less than r̂  the optimal 
configuration corresponds to that obtained for the first mode considered in isolation, and only for r > r̂  starts to 
change. This “take-off” value r̂  depends on the angular velocity n and it can be explained by observing that for  
0 ≤ r < r̂  f1,2  has a minimum at the boundary point ξ2 = 0, but this is not a stationary point (see Fig. 2 (a)-

(b)). Increasing r the shape of f1,2  changes and only when r becomes equal to r̂ , ξ2 = 0 becomes a stationary 

point. For r> r̂  the absolute minimum point of f1,2  remains a stationary point, and the optimal position of the 

left side of the PZT plates begins to move to reach, at r=1, the optimal configuration which would be obtained 
considering the second mode in isolation (Fig. 3 (a)). To emphasize this phenomenon, two zoomed plot, for 
r=0.6 and r=0.8 focusing on the region where f1,2 experiences a minimum, have been reported in Fig. 5. There-

fore, r̂  can be obtained by search the value of r where the first derivative of f1,2 , with respect to ξ2, is zero for 

ξ2 = 0; thus, from the equation (35.1): 
 

r̂ =
φ1

II 0( )φ1 1( )
φ1

II 0( )φ1 1( ) − φ2
II 0( )φ2 1( ) ω1

ω2

     (36) 

 

To study the coupling between 2nd-3rd and 3rd-4th modes the functions f2,3 , f3,4  are pictured in Figs. 7, 10. 

In these cases there is a constant gradual transition from the first to the second optimal configuration (Fig. 8 and 
Fig. 11). It can be noticed that, also in these cases, when n increases, the shapes of the first derivative of the 
third and fourth mode changes (see Fig. 6 and 9), and the optimal configuration to damp these modes is, there-
fore, modified. The optimal positions of the right side for the coupling between the third and the fourth mode 
have not been reported because the results are very similar to those shown in Fig. 3 and in Fig. 8.  
Observing Fig. 12 it can be noticed that, differently from the others considered modes, there is an abrupt transi-
tion of the absolute minimum of φ5

I ξ2( ) with n; this is, approximately, at ξ2 = 0.25 until n=2000 rpm and 

then it shifts to  ξ2 = 0.75 (see Fig. 12 (b)). This could entails abrupt transition of the PZT optimal position 
when the fifth mode is one of the coupled modes.  For example in Fig. 13 and in Fig. 14 are reported the results 
when the fifth mode is coupled to the second. The behaviour for n=0 rpm, 1000 rpm, 2000 rpm is rather regular, 
but a sharp transition is experienced, near r=1, for the other velocities (see for example plots for n=3000 rpm, 
4000 rpm, 5000 rpm in Fig. 14). This can be explained analysing Fig. 15. For r=0 f2,5  is proportional to 

φ2
I ξ2( ) and there is only one minimum and one maximum. The same trend is found when the contribution of 

the fifth mode increases until r reaches a value, r≈0.46 for n=1000 rpm and , r≈0.36 for n=5000 rpm, where 
another minimum (and a maximum) appears near ξ2 = 0.6 . The reason of the transition is that for n = 5000 

rpm (for example), next to  r=1 , this develops into an absolute minimum at ξ2 = 0.7 . An analogous behavior 
is obtained for n = 3000 rpm and 4000 rpm.  
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When the fifth mode is coupled with the third mode (see Fig. 16 and Fig. 17) a different behaviour is obtained 
when varying the rotational speed. The optimal placement of the left-hand side of the PZT plates is almost inde-
pendent of n for low values of r but a bifurcation is observed for values around r=0.3, whereby for n < 2000 
rpm the optimal location points to the left and above n = 2000 rpm the optimal locations move towards the right.  

The velocity n=2000 rpm is between the two fields, there is initially a trend to right then a sharp transition to 
the left. This behaviour correspond to the location of the absolute minimum of φ5

I ξ2( ) (Fig. 12).  

Also in these cases the results for the optimal positions of the right side of the PZT actuators are analogous to 
those shown in Fig. 3 and in Fig. 8.  

All comparisons performed between the FEM simulations and the proposed model, to corroborate the ana-
lytical results, have shown a very good agreement between numerical predictions and the solutions. For clarity 
only the results for three values of n (n = 0, 1000 and 5000 rpm) are shown. 

 
 
 
 
 
 
 

   
             (a)  f1,2 n,ξ2( ) for r = 0.0                                       (b)  f1,2 n,ξ2( ) for r = 0.3 

 
 
 
 

 
                 (c)   f1,2 n,ξ2( ) for r = 0.6                               (d)    f1,2 n,ξ2( ) for r = 1.0 

Fig. 2 f1,2 n,ξ2( )  ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm.  
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(a) Optimal Placements of the Left Sides (OPLS)                                   (b) Optimal Placements of the Right Sides (OPRS)    

Figure 3: Optimal Placements of the Left Sides (OPLS) and Right Sides (OPRS) for the coupling between the first and the second mode by 

applying the Proposed Analytical Model (PAM) and the Finite Elements Method (FEM). ⎯ n=0 rpm (OPLS-PAM); ⎯ n=1000 rpm 

(OPLS-PAM); ⎯ n=2000 rpm (OPLS-PAM) ⎯ n=3000 rpm (OPLS-PAM) ⎯ n=4000 rpm (OPLS-PAM)  ⎯ n=5000 rpm 

(OPLS-PAM); ⎯ all the velocities (OPRS-PAM) × n=0 rpm (OPLS-FEM) × n=1000 rpm (OPLS-FEM) × n=5000 rpm (OPLS-FEM); 
 

 
Fig. 4 First derivative of the second mode ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  

⎯ n=5000 rpm 

   
              (a)   f1,2 n,ξ2( ) for r = 0.6                                               (b)   f1,2 n,ξ2( ) for r = 0.8 

Fig. 5 Zoom-in of the absolute minimum region of f1,2 n,ξ2( )  ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 

rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm. 
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Fig. 6 First derivative of the third mode ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  

⎯ n=5000 rpm 

   
 

(a)   f2,3 n,ξ2( ) for r = 0.5                                               (b)           f2,3 n,ξ2( ) for r = 1.0 

Fig. 7 f2,3 n,ξ2( )  ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm.  

   
(a) Optimal Placements of the Left Sides (OPLS)                                   (b) Optimal Placements of the Right Sides (OPRS)    

Figure 8: Optimal Placements of the Left Sides (OPLS) and Right Sides (OPRS) for the coupling between the second and the third mode by 

applying the Proposed Analytical Model (PAM) and the Finite Elements Method (FEM). ⎯ n=0 rpm (OPLS-PAM); ⎯ n=1000 rpm 

(OPLS-PAM); ⎯ n=2000 rpm (OPLS-PAM) ⎯ n=3000 rpm (OPLS-PAM) ⎯ n=4000 rpm (OPLS-PAM)  ⎯ n=5000 rpm 

(OPLS-PAM); ⎯ all the velocities (OPRS-PAM) × n=0 rpm (OPLS-FEM) × n=1000 rpm (OPLS-FEM) × n=5000 rpm (OPLS-FEM); 
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Fig. 9 First derivative of the fourth mode ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  

⎯ n=5000 rpm 

    
Fig. 10 f3,4 n,ξ2( )  ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm. 

 
Figure 11: Optimal Placements of the Left Sides (OPLS) for the coupling between the third and the fourth mode by applying the Proposed 

Analytical Model (PAM) and the Finite Elements Method (FEM). ⎯ n=0 rpm (OPLS-PAM); ⎯ n=1000 rpm (OPLS-PAM); ⎯ 

n=2000 rpm (OPLS-PAM) ⎯ n=3000 rpm (OPLS-PAM) ⎯ n=4000 rpm (OPLS-PAM)  ⎯ n=5000 rpm (OPLS-PAM); ⎯ all 
the velocities (OPRS-PAM) × n=0 rpm (OPLS-FEM) × n=1000 rpm (OPLS-FEM) × n=5000 rpm (OPLS-FEM); 
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(a) First derivative of the fifth mode                              (b) Zoom-in of the minimum region of the first derivative of the fifth   
             mode 

Fig. 12 First derivative of the fifh mode ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  

⎯ n=5000 rpm 
 

 

  
                     (a)   f2,5 n,ξ2( ) for r = 0.5                                               (b)           f2,5 n,ξ2( ) for r = 1.0 

Fig. 13 f2,5 n,ξ2( )  ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm.  
 

    
(a) Optimal Placements of the Left Sides (OPLS)                                   (b) Zoom-in of Optimal Placements of the Left Sides next to r=1    

Figure 14: Optimal Placements of the Left Sides (OPLS) for the coupling between the second and the fifth mode by applying the Proposed 

Analytical Model (PAM) and the Finite Elements Method (FEM). ⎯ n=0 rpm (OPLS-PAM); ⎯ n=1000 rpm (OPLS-PAM); ⎯ 

n=2000 rpm (OPLS-PAM) ⎯ n=3000 rpm (OPLS-PAM) ⎯ n=4000 rpm (OPLS-PAM)  ⎯ n=5000 rpm (OPLS-PAM); ⎯ all 
the velocities (OPRS-PAM) × n=0 rpm (OPLS-FEM) × n=1000 rpm (OPLS-FEM) × n=5000 rpm (OPLS-FEM); 
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                     (a)   f2,5 r,ξ2( )  for n =1000 rpm                                               (b) f2,5 r,ξ2( ) for n = 5000 rpm 

Fig. 15 f2,5 r,ξ2( )   ⎯r=0;  ⎯ r=0.2;  ⎯ r=0.4  ⎯ r=0.6  ⎯ r=0.8  ⎯ r=1.0 
 
 
 

    
(a)   f3,5 n,ξ2( )  for r = 0.4                                               (b)           f3,5 n,ξ2( )  for r = 0.5 

Fig. 16 f3,5 n,ξ2( )   ⎯ n=0 rpm;  ⎯ n=1000 rpm;  ⎯ n=2000 rpm  ⎯ n=3000 rpm  ⎯ n=4000 rpm  ⎯ n=5000 rpm. 
 

 
 

Figure 17: Optimal Placements of the Left Sides (OPLS) for the coupling between the third and the fifth mode by applying the Proposed 

Analytical Model (PAM) and the Finite Elements Method (FEM). ⎯ n=0 rpm (OPLS-PAM); ⎯ n=1000 rpm (OPLS-PAM); ⎯ 

n=2000 rpm (OPLS-PAM) ⎯ n=3000 rpm (OPLS-PAM) ⎯ n=4000 rpm (OPLS-PAM)  ⎯ n=5000 rpm (OPLS-PAM); ⎯ all 
the velocities (OPRS-PAM) × n=0 rpm (OPLS-FEM) × n=1000 rpm (OPLS-FEM) × n=5000 rpm (OPLS-FEM); 
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IV. CONCLUSIONS 
In [24] some of the authors have proposed a new theoretical model for the optimal placement of piezoelectric 

plates to control the multimode vibrations of a fixed cantilever beam In this paper the model has been extendet 
to a rotating cantilever beam. After a detailed description of the theoretical model, various combinations of bi-
modal excitations are considered. The design of the optimal configurations, for different coupled modes, differ-
ent relative contributions and for various angular velocities are reported. The validity of the proposed optimiza-
tion technique has been confirmed by comparison between numerical results, obtained by FEM simulations, and 
theoretical findings. The usefulness of the model can be assessed in many real situations when the spectrum of 
the load excites more eigenmodes and the damping is necessary to improve the integrity of engineering struc-
tures, e.g. gas turbine blades, or increase their fatigue life. The proposed model allows to find, for every load 
spectrum, the optimal configuration of the piezoelectric plates to obtain the best performances in terms of vibra-
tions amplitude reduction or power consumed. The application of the proposed methodology to the real gas tur-
bine blades [34], with the inclusion of the torsional modes, and their response to an impulse load [35] will con-
stitute the object of further contributions. 
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