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Abstract— The fuzzy inference system (FIS) has been developed for predicting customer buying
behavior. Three different methods: (grid partitioning, fuzzy c-means, subtractive) have been used to get
the member ship values during the fuzzification of inputs which isthefirst step in the creation of FIS. For
each method, two different FIS models (Mamdani-type FIS and Sugeno-type FIS) have been developed.
ANFIS training is also done on the Sugeno-type FIS to tune the FIS parameters using the input/output
training data. Finally, the comparison table has been prepared to list out the efficiencies in terms of
accuracy for the different techniques used and thus finds out which method is the best for the particular
system.
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I.  INTRODUCTION

Fuzzy inference is the process of making a mapping system from a given input to an output using fuzzy logic.
The mapping then provides a basis from which decisions can be made, or patterns can be discovered [14].Fuzzy
inference systems have been correctly applied in many fields such as automatic control, data classification,
decision analysis, expert systems, and computer vision [14].0ne of the traditional ways of classifying the input
data is to use data mining technique called Naive Bayesian classifier in which the probability of input data to be
classified is calculated for each output classes and thus the output class having the higher probability is made as
final output.

The reasons for using fuzzy logic in predicting customer buying behavior are [15]:
= Fuzzy logicis conceptually easy to understand.
=  Fuzzy logicisflexible.
=  Fuzzy logic istolerant of imprecise data.
= Fuzzy logic can model nonlinear functions of arbitrary complexity.
= Fuzzy logic can be built on top of the experience of experts.
= Fuzzy logic can be blended with conventional control techniques.
= Fuzzy logicis based on natural language.

The customer buying prediction has got a lot of importance in data analytics through which alot of companies
use that information to see when and under what conditions the customer buys a particular product. Depending on
that information the company gives offer in order to maximize their sales.

The rest of the paper is organized as follows: Section |l deals with different approaches in making FIS.
Section 11 shows different steps involved in fuzzy inference process. Section 1V gives the information about the
fuzzy rule base. Section V, gives results and discussions and section VI conclusions.

Il. DIFFERENT APPROACHESIN MAKING FIS

There are two approaches or the ways to make a fuzzy inference system.

(1) Mamdani :

The Mamdani method has severa advantages like [18]

=  Mamdani method iswidely accepted for capturing expert knowledge.
= |t alowsusto describe the expertise in more intuitive, more human-like manner.
=  Mamdani-type FIS uses the technique of defuzzification of afuzzy output.
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= Due to the interpretable and intuitive nature of the rule base, Mamdani-type FIS is widely used in
particular for decision support application.

=  Mamdani FIS has output membership functions.
Demerits of this method are:

= Mamdani FISislessflexiblein system design

=  Mamdani-type FIS entails a substantial computational burden.
(2) Sugeno:
The Sugeno method has several advantages like [18]

= Sugeno method is computationally efficient and works well with optimization and adaptive techniques,
which makesit very attractive in control problems, particularly for dynamic nonlinear systems.

=  Sugeno-type FIS uses weighted average to compute the crisp output.

= Sugeno has better processing time since the weighted average replace the time consuming
defuzzification process.

The demerits of this method are:

= The expressive power and interpretability of Mamdani output is lost in the Sugeno FIS since the
consequents of the rules are not fuzzy.

= Sugeno FIS has no output membership functions

The Sugeno type FIS can be trained using ANFIS which is also called as Adaptive Neuro Fuzzy Inference
System (ANFIS).

ANFIS s helpful in tuning the membership function parameters by using either a backpropagation algorithm
alone or in combination with aleast squares type of method to model a given set of 1/0 data.
I1. FUZZY INFERENCE PROCESS
Fuzzy inference process consists of five parts: fuzzification of the input variables, application of the fuzzy
operator (AND or OR) in the antecedent, implication from the antecedent to the consequent, aggregation of the
consequents across the rules, and Defuzzification [16].
1. Fuzzify Inputs

The first step is to take the inputs and determine the degree of membership to which they
belong to each of the appropriate fuzzy sets [16]. In order to do this, any one of the below
methods can be used:

= grid partitioning
=  fuzzy c-means
= gubtractive clustering
2. Apply Fuzzy Operator
3. Apply Implication Method
4. Aggregate All Outputs
5. Defuzzify

V. FUZZY RULE BASE
All the attributes are classified as numerical or categorical.
Input attributes are;
= Age-Numerica attribute
= Income-Numerical attribute
=  Student-Categorical attribute
=  Credit Rating-Numerical attribute
Output attributes are;
=  Buys-Numerica attribute

Numerical attributes are those where each input data in an attribute has non zero membership values for each of
the clusters formed for an attribute. Their values have range [0,1].

Categorical attributes are those where each input data in an attribute has only a single non zero membership value
for one of the clusters and zero membership values for the other clusters. They take the values as either zero or
one.
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Here the number of membership functions for each input is:

= Age-3
=  |ncome-3
= Student -2

=  Credit Rating -2
TABLE . RULE BASE FOR THE FIS[5]

RID Age Income Student Credit Rating Buys

1 <=30 high no fair no
2 <=30 high no excellent no
3 31...40 high no fair yes
4 >40 medium no fair yes
5 >40 low yes fair yes
6 >40 low yes excellent no
7 31...40 low yes excellent yes
8 <=30 medium no fair no
9 <=30 low yes fair yes
10 >40 medium yes fair yes
11 <=30 medium yes excellent yes
12 31...40 medium no excellent yes
13 31...40 high yes fair yes
14 >40 medium no excellent no

If the fuzzy inference system is Mamdani then the number of membership functions for the output would be taken
astwo.

The type of membership function is taken as:
For Mamdani-
= Input attributes-gaussmf
= Qutput attribute-gaussmf
For Sugeno-
= Input attributes-gaussmf
= Qutput attribute-constant/linear
For the above mentioned rule base, therule list to be added in the FIS istaken as:
TABLE II. MAMDANI AND SUGENO RULE LIST

Mamdani rulelist Sugeno rulelist
ruleList=T ... ruleList=[ ...
1321211 1321111
1322211 1322211
2321111 2321311
3221111 3221411
3111111 3111511
3112211 3112611
2112111 2112711
1221211 1221811
1111111 1111911
3211111 32111011
1212111 12121111
2222111 22221211
2311111 23111311
3222211 32221411

] |

In order to measure the accuracy, the testing data along with the expected output considered is given in Table
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TABLEIIl. TESTING DATA WITH EXPECTED OUTPUT

Age | Income | Student Credit Expected
Rating buys
12 3 2 1 2
19 3 2 2 2
30 3 2 1 2
42 2 2 1 1
25 3 2 1 2
19 3 2 2 2
35 3 2 1 1
38 3 2 1 1
39 3 2 1 1
41 2 2 1 1
42 1 1 1 1
45 1 1 1 1
46 1 1 2 2
45 1 1 2 2
32 1 1 2 1
30 2 2 1 2
25 2 2 1 2
25 1 1 1 1
43 2 1 1 1
46 2 1 1 1
20 2 1 2 1
25 2 1 2 1
35 2 2 2 1
38 2 2 2 1
39 3 1 1 1
40 3 1 1 1
45 2 2 2 2
43 2 2 2 2
24 3 2 1 2
44 2 2 2 2

The range of an attribute is taken as minimum and maximum value available in the column of that particular
attribute in testing data.

V. RESULTS AND DISCUSSIONS

Anfis training for Sugeno type FIS is done for one epoch. If the output value is greater than 1.5 then it is
categorized in the second cluster else it is categorized in the first cluster. The accuracy is calculated based on the
formula: Accuracy= [(Number of outputs correctly classified) / (Total number of outputs)]*100. The FIS results
obtained using Grid partitioning isgivenin TABLE V.
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Membership Function Editor: grid_mamdani = ==
File Edit Wiew
FIS Wariables Membership function plots  Plot points: 121
imtmt1 in1mf2 in1mf3
g r v "
..A A,
1 outl
XX |
P input wariable "1™
Current “ariakle Zurrent Membership Function (click on MF 1o sslect)
Name 1 Blane in1mf1
Twpe input Type gauss=mTt ~
Params [F.219 12]
Range [12 48]
Display Range [12 45] Help Close | |
Reacdy |
Fig.3. Age membership functions
Membership Function Editor: grid_mamdani - =
File Edit | Wiew
FIS Variables Memberzhip function plets  Rlot points: 181
im2rgmf1 inZmfz inZmf3
0 N N n n . n n n N
input variable "2
Current Membership Function (click on MF to =elect)
Marme 2 (== in2mf1
Type impLt Tvpe gaussmT L
PETEE [0.4247 1]
Range 1 3]
Display Range 1 31 Help Close | |

Selected variahble "2"

ISSN : 0975-4024

Fig.4. Income membership functions

Vol 5No 5 Oct-Nov 2013

4097



Gaurav Kumar Nayak et.al / International Journal of Engineering and Technology (1JET)

Membership Function Editor: grid_mamdani - =
File Edit Wiew
FIS Variables Membership function plots  Plot points: 181
1 b b
/XX
1 out1
N input wariable "3
Current Wariable Currernt Membership Function (click on MF to select)
Mame 3 Mame 1
Tvwpe inpLt Type trimf L
Params= 41 1
Range 121 [ 1
By [REnE= [12] Help | Close
Selected wvariable "3"
Fig.5. Student membership functions
Membership Function Editor: grid_mamdani - =
File | Edit Wiew
FIS Variables Membership function plots  Rlot points: 131
indmt1 in4mifz
I
out1
o E 1 1 1 1 1 1 1 1 1 .
. input wariable 4"
Current wariable Current Membership Function (click on MF to select)
Mame 4 Blamne: inamf1
Tywpe imput Type gaussmf o
FErETE [0.4247 1]
Range 12
Display Range 1 2] Help | Close | |
| Selected wariakle 4" |
Fig.6. Credit Rating membership functions
Membership Function Editor: grid_mamdani - = -
File Edit Wiew
FIS “ariables Membership function plots  Plot point=: 121
outlmf1 outljmfz
= output variable "out1™
Current wariakle Current Membership Function (click on MF to s=lect)
Mame ot Mame out1mfi
Tvpe output Type gaus=mf .
Params [0.4247 1]
Range =
USRI REMER I 2] Help | Close | ‘
Selected variable "out1 ™

Fig.7. Output membership function for grid based Mamdani
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TABLE IV. MAMDANI AND SUGENO GRID PARTITIONING BASED FIS COMPARISON

Mamdani Sugeno
andMethod Min Prod
orMethod Max Max
defuzzMethod Centroid Wtaver
impMethod Min Prod
aggMethod Max Max
Accuracy (in%) | 76.666667 output membership function type :linear

Before training-56.66%
After anfis training-100%
output membership function type :constant
Before training-56.66%
After anfistraining- 93.33%

The graphs generated for FIS with grid partitioning after ANFIS Training is given in Fig 8-Fig10.
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Fig.10. Output membership function for grid based Sugeno

The Second experiment is developing FIS using Fuzzy c-meang5]. The results obtained using FUZZY c-meansis

givenin TABLE V.

In order to get non zero sigma value and avoid the occurrence of ‘NaN’ values, the maximum number of
iterations has been set for different input attributesin the fcm options as:

=  Age-100 iterations (same as default)

=  |ncome-5 iterations
= Student-4 iteartions
= Credit Rating-4 iterations

For the Mamdani type FIS, the maximum number of iterations taken for the output attribute is two.
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Fig.13. Age membership functions

Membership Function Editor: fomn_mamdani -_ =
File Edit Wiew
FIS Variables Membership function plots  Plot point=: 121
inZcluster3 in2cluEtnidste2
o N N N | \ \ \ \ \ I
- input wvariable 2"

Current Wariakble Current Membership Function (click on BMF to select)

rMame 2 Marme inZcluster1

Twvpe input Tvpe gaussmfT ot

(PEFEGS [0.23587 2.764]
FRange 1 21
Display Rangs 1 31 Help | Close

Selected wariable

Fig.14. Income membership functions
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Fig.15. Student membership functions
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Fig.16. Credit Rating membership functions
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Fig.17. Output membership function for fcm based Mamdani
TABLE V. MAMDANI AND SUGENO FCM BASED FIS COMPARISON

Mamdani Sugeno
andMethod Min Prod
orMethod Max Probor
defuzzMethod Centroid Wtaver
impMethod Min Prod
aggMethod Max Sum

Accuracy (in %) | 36.666667 output membership function type :linear
Before training-56.66%
After anfis training-100%
output membership function type :constant
Before training-56.66%
After anfistraining- 96.66%

The graphs generated for FIS with Fuzzy c-means partitioning after ANFIS Training is given in Fig 18- Fig 20.
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Fig.19. Rule view of fcm based Sugeno
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Fig.20. Output membership function for fcm based Sugeno

The third experiment is developing FIS using membership values generated by subtractive clustering. The FIS
results obtained using subtractive clustering isgivenin TABLE VI.
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In order to get a proper number of membership functions for an attribute which would be easier to map on the
fuzzy rulelist for the FIS defined earlier, the cluster radius for each of the input attribute has been chosen as:

=  Age0.25

= Income-0.3

= Student-0.3

= Credit Rating-0.3
For the Mamdani type FIS, the cluster radius for the output attribute is taken as 0.3
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Fig.23. Age membership functions
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Fig.24. Income membership functions
Membership Function Editor: subtractiee_mamdani - = -

File Edit Wiew
FIS Variables Membership function piots  Plot points: 181
. _
outl
0 I 1 I I I I I I I
P input wariable "3~
Current »ariable Current Membership Function (click on MF to select)
MName 3 Mame 1
Tvpe input Twpe trimf Ll
Params= 111
Rangs = [ 1
[BUSGEIER FREnER 1 2] Help | Close | |
| Selected variable "3 |
Fig.25. Student membership functions
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Fig.26. Credit Rating membership functions
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Fig.27. Output membership function for subtractive based Mamdani
TABLE VI. MAMDANI AND SUGENO SUBTRACTIVE BASED FIS COMPARISON

Mamdani Sugeno
andMethod Min Prod
orMethod Max Probor
defuzzMethod Centroid Witaver
impMethod Min Prod
aggMethod Max Max

Accuracy (in %) | 53.333333 output membership function type :linear
Before training-56.66%
After anfis training-100%
output membership function type :constant
Before training-56.66%
After anfistraining- 93.33%

The graphs generated for FIS with subtractive clustering after ANFIS Training is given in Fig 28-Fig 30.
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Fig.28. Surface view of subtractive based Sugeno
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Fig.29. Rule view of subtractive based Sugeno
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Fig.30. Output membership function for subtractive based Sugeno

Finally GUI is prepared for the end user where the customer details like age, income ,student , credit rating can be
entered and used by the developed FIS to predict whether the customer would buy a particular product or not.
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Fig.31. GUI for the end user
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VI. CONCLUSION

The performance of Fuzzy Inference system depends on the FI'S approach chosen like Mamdani, sugeno and
also on choosing appropriate fuzzy partitioning technique. In this paper we have done several experiments with
all combinations of FIS approaches and fuzzy partitioning techniques. For the Sugeno type systems, the
experimental results for predicting customer buying behavior show that, al three fuzzy partitioning techniques
namely grid partitioning, fuzzy c-means, and subtractive clustering play a significant role. ANFIS training has
further improved the accuracy when tuned with output membership function type as linear. Among the Mamdani-
type FIS, grid partitioning method gave better accuracy than subtractive and fuzzy c-means clustering techniques.
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