
FPGA Implementation of Adaptive Filter
and its Performance Analysis

J. Malarmannan, S. Malarvizhi
Department of ECE, SRM University

Chennai, India
arunmalar88@gmail.com, malarvizhi.g@ktr.srmuniv.ac.in

Abstract- Adaptive filters are used in various real-time applications such as echo cancellation, noise
cancellation, system identification and prediction. Field -programmable gate arrays (FPGAs) are also
used most widely for applications where timing requirements are strict. Thus implementation of filter in
real-time is needed. The objective of this paper is to design and implement an Adaptive filter which is
robust to impulsive noise using hardware description language (HDL) design. The design implementation
and its performance analysis are presented. The targeted FPGA is Altera CycloneIV. The obtained
design results in superior performance, greater data sample frequency and less logic occupation.

Keywords- Adaptive filters, Application Specific Integrated Circuits (ASIC), Field-programmable gate array
(FPGA), Hardware description language(HDL).

I. INTRODUCTION
Adaptive filters are digital filters capable of self- adjustment. These filters can change with accordance to their
input signals. An adaptive filter is used in applications that require differing filter characteristics in response to
variable signal conditions. Adaptive filters are typically used when noise occurs in the same band as the signal
or when the noise band is unknown or varies over time. The adaptive filter requires two inputs: the input signal
and a noise or reference input. An adaptive filter has the ability to update its coefficients. New coefficients are
sent to the filter from a coefficient generator. The coefficient generator is an adaptive algorithm [1] that modifies
the coefficients in response to an incoming signal. In most applications the goal of the coefficient generator is to
match the filter coefficients to the noise so that the adaptive filter can subtract the noise from the signal. Since
the noise signal varies, the coefficients must vary to match it, hence the name adaptive filter. The digital filter is
typically a special type of finite impulse response (FIR) filter, but it can be an infinite impulse response (IIR) or
other type of filter. On the other hand, Application Specific Integrated Circuits (ASIC) could provide the
solution that meets all the constraints. However, they lack the flexibility existing in a DSP processor or Field
Programmable Gate Array (FPGA) and leave no room for re-configurability of their circuitry. Hence the use of
FPGAs is increasing. Hence, FPGAs are the target hardware here for the implementation of Adaptive
Algorithm.
Adaptive filters have uses in a number of applications including noise cancellation, linear prediction, adaptive
signal enhancement, and adaptive control which are variedly applied in Acoustic environment modelling for
Sonar applications [2]. Noise cancellation is also an important field where adaptive filtering is used [3].Adaptive
modelling plays a significant role in control systems and signal processing. It is widely used in control tasks,
especially in cases when system structure is known, but its parameters are poorly defined. Impulsive noise
suppression in speech is very important for clear voice communications. For signal processing, impulsive noise
suppression is carried out using nonlinear M-filters, namely, median and myriad filters. And the algorithm used
here is a new Adaptive algorithm that is applicable for noise cancellation.

II. GENERAL DESCRIPTION OF FPGA BASED SIGNAL PROCESSING
Most digital signal processing done today uses a specialized microprocessor, called a digital signal processor,
capable of very high speed multiplication. This traditional method of signal processing is bandwidth limited.
There occur a fixed number of operations that the processor can perform on a sample before the next sample
arrives. FPGA-based digital signal processing is based on hardware logic and does not suffer from any of the
software based processor performance problems [4]. FPGAs allow applications to run in parallel so that a 128
tap filter can run as fast as a 10 tap filter. Applications can also be pipelined in an FPGA, so that filtering,
correlation, and many other applications can all run simultaneously. In an FPGA, most of the application is
working mostly when timing requirements are strict. An FPGA can offer 10 to 1000 times the performance of
the most advanced digital signal processor at similar or even lower costs.
 Nowadays, the use of FPGAs is increasing. They are the prototyping hardware devices, combining the
main advantages of ASIC and DSP processors, since they provide both a programmable and a dedicated
hardware solution. It is usual to use an FPGA as the prototyping device due to factors such as time and cost.
Moreover, an FPGA is more efficient in power consumption, an advantage for battery-operated systems, and, for
the same application, requires less clock system speed compared to a DSP or a general-purpose processor,

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3056

offering better electromagnetic compatibility properties. Thus, for a wide range of applications, FPGA
implementation might be the best option. However, in the case of low sampling frequency requirements or no
low power consumption needs, some other devices could be more suitable. In this paper, FPGAs are the target
hardware used. FPGAs are ideally suited for the implementation of adaptive filters. However, there are several
issues to be addressed. Calculation of adaptive algorithm in software simulations are normally carried out with
floating point precision. Another concern is the filter tap itself. Various techniques have been devised to efficiently
calculate the convolution operation when the filters coefficients are fixed in advance. For an adaptive filter
whose coefficients change over time, these methods will not work or need to be modified significantly.

III.ADAPTIVE ALGORITHM
Adaptive algorithm includes calculation of values like e(n), β and µ. The Update Algorithm [1] is divided into
four logic steps. The Adaptive algorithm is fed back to the Adaptive system as shown in Fig. 1 and the response
output is y(n).
 Step 1) Calculation of y(n) . Here L=9.
y(n) = ∑ ሺ݊ݔ െ ݇ሻ௅ିଵ௞ୀ଴ . ௡ሺ݇ሻ = Xtݓ

n. Wn (1)
 where y(n) = Convoluted filter output.

 L = Convolution Length.
ሺ݊ݔ െ ݇ሻ= Delay line samples by the input of the filter.
 ௡ሺ݇ሻ = Weight Signalݓ

Fig 1.Adaptive Filter Scheme

Step 2) Calculation of error e(n). The Estimation error is the difference between desired input and the adaptive
system output y(n).
e(n) = d(n) - y(n). (2)

 where e(n) = Filter error signal.

d(n) = Filter desired signal.
 Step 3)Calculation of β by finding theVariance(ߪଶ)[5] with low computational cost.
 ଶ(n) = 1. (3)ߪ,ଶ(n - 1) + ݁ଶ(n)/n, if n = 0ߪ.ଶ(n) = 0.95ߪ
 where ߪଶ(n) = Variance of the filter.

 β = Cost function of the filter.
 Step 4) Calculation of weight update coefficient ݓ௡ାଵ(k). The filter coefficients are updated based on the
following equation where ݓ௡(k) and ݓ௡ାଵ(k) are the current and updated co-efficients, μ is the learning rate, and
x(n − k) is the delay-line samples provided by the input of the filter:
 w୬ାଵ(k)
= w୬(k) + μ. Sign[e(n)].x(n - k), if |e(n)| >σଶ w୬(k) + μ.[(2/σଶ)- |e(n)|/σଶ)].e(n) .x(n - k), if |e(n)| ≤ σଶ (4)

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3057

 where µ = Learning rate of the filter.

Fig 2. Architecture of Adaptive filter Scheme.

In Fig 2, the architecture of Adaptive algorithm is shown where the calculation of convoluted output y(n), error
e(n), Variance and weight updation are done in a loop form where the weights are given as feedback to the filter
itself. The desired d(n) signal is to be retrieved back by removing the impulse noise. The input x(n) is a real time
audio signal. Noise is added additionally and the error is computed. After the weight updation, the filter output
is processed again in iterations to get back the desired signal.

IV. FPGA IMPLEMENTATION OF THE FILTER
In order to perform all the required calculations for each new data sample (iteration), we defined a finite state
machine (FSM) shown in Fig. 3. The dataflow of the FSM comprises of six different states which calculates the
adaptive algorithm, The FSM, when in State0 called as idle state waits for a new data sample. Once the data is
received, the FSM increments the

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3058

Fig 3. FSM flow of the design

state for every new clock cycle in order to perform different calculations at each state. Thus, most of values in
these calculations are intermediate values (Midvalue_∗ signals). After six clock cycles, all the calculation
process is completed, including the output value and coefficient’s update, being ready for a new data sample.
For the FSM to work properly, the signal DATA_IN must be high during all the states. There also exists an

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3059

ENABLE_IN signal preventing the FSM to start a new calculation for the same input data, only allowing a new
calculation when DATA_IN goes low and then high, i.e., new input data are received. The intermediate values
used here are Midvalue_r, Midvalue_s, Midvalue_t, Midvalue_u, Midvalue_v, Midvalue_y and Midvalue_z.
All the calculations are distributed among the states, obtaining partial results to optimize logic resources. The
dataflow for FSM is shown in Fig 3 which includes six different states are as follows.
 In STATE 1 the filter output signal y(n) is calculated. This state makes use of nine multiplications, eight
additions, and one FIFO register to store the new sampled input and the L − 1 previous inputs (input vector).In
STATE 2, calculation of Midvalue_r, Midvalue_s, error, and the product [μ · x(n)] is done. Midvalue_r is the
result of a division, then it will be ready for the next state (S3), and the product [μ · x(n)] is stored in a second
FIFO register called updatevector. Here, two multiplications, one division, and one addition are required. This
logic resource is reused iteratively for every clock cycle thereby reducing the area consumption. In STATE 3,
the variance (sigmasquare), Midvalue_t, and Midvalue_u values are obtained, requiring a single multiplication,
an addition, and a division. This state also undergoes reusability of an adder and a multiplier. STATE 4
computes one division for the calculation of Midvalue_v. In STATE 5, Midvalue_y and Midvalue_z are
calculated using a multiplication and an addition. In STATE 6, the coefficient’s update algorithm is performed
for all the ݇௧௛ coefficients, using all the intermediate values obtained from previous states by Midvalue_∗
signals.

V.HARDWARE OPTIMIZATION
Hardware optimization is a criterion which results in better performance analysis. In this filter implementation
the computations done are addition, multiplication and division. Here, in each state, maximum three
multiplications and one addition is performed. No more than one state will be executed in the same time since
the implementation is done using finite state machine (FSM). So, instead of using separate hardware’s for each
state we reuse same multipliers and adders. This will give better hardware efficiency without compromising the
performance. There is an increase in area consumption of the filter which does not reuse the hardware’s such as
adder and multiplier for adaptive algorithm implementation which is tabulated in Table 1 with a maximum of
2% Logic elements and 5% multiplier elements of the total FPGA memory which undergoes iterative process
for weight updation.

Hardware’s

Area Utilization

Total Logic Elements

2,461(2%)

Total Registers

672

9-bit Multiplier Units

25(5%)

Table 1. Area Utilization of filter

VI.SIMULATION RESULTS

Fig 4. Flow of State machine

The FSM flow simulation is shown in Fig. 4, which involves flow of data according to DATA_IN valves at
different iterations involving at six clock cycles.

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3060

Fig 5.Fmax report of filter design without reusability of hardware

The simulation result of filter without and with reusability of hardware is shown in Fig 6 and Fig 7 respectively.
The clk, rst and enable signals are made high and later reset is set to 0. Now, the data inputs of the filters are
given. Now the simulation is done and the filter output is acquired for every clock cycle. At the end of sixth
clock cycle, the iteration is completed. Also, the weight gets updated and at the end of sixth clock cycle, it
becomes 0. The design which is done in HDL is synthesized using Altera QuartusII tool. The logic occupation
of the design is viewed after synthesis. The adder and the multiplier units are reused again and again for every
iteration, thereby increase in area occurs. Hence this is avoided by using the same adder and multiplier units for
each iteration thereby reducing the logic occupation. The overall multiplier units consumed is 5% and that of
reusing hardware is 2% which is shown in Fig 8 and Fig 9 respectively. The maximum operating frequency of
the design is 81.7MHz. Table 2 highlights the logic occupation of the filter in Altera CycloneIV FPGA target
hardware. Since the logic elements are reused here for every iterations, the area utilisation is greatly reduced.

Fig 6. Simulated Output of Normal filter

Fig 7. Simulated Output of filter with reusability of hardware

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3061

Fig 8. Area utilization of Normal filter

Fig 9. Area utilization of filter withreusability of hardware

Fig 10.Fmax report of filter design with reusability of hardware

 From the Simulated results the Weight updation generator generates Weight coefficients for every six clock
cycles in the FSM unit. By reusability of hardware’s the area occupation is greatly reduced to 3% than the filter
design which does not reuse hardware. Hence the area and the power consumption greatly reduces thereby
increasing the performance and speed which is shown in Fig. 10.The data sample frequency is greatly increased
thereby increasing the performance.

Filter type

Area Utilization

Sample Frequency
(fmax)

Filter without
reusability of

hardware

5%

8.41MHz

Filter with
reusability of

hardware

2%

81.79MHz

Table 2. Comparison table for performance analysis of filter

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3062

VII. FPGA IMPLEMENTATION

Fig 11.FPGA Implementation of the filter design

Implementation of Adaptive filter is done in Cyclone-IV target hardware as shown in Fig 11. An audio signal,
which is a real-time input is being processed along with the addition of noise and filtered output is retrieved
back after updation of weight co-efficient. Higher speed of system clock is achieved with six clock cycles which
offers greater data sample frequency. The logic occupation which includes mainly the Logic elements,
multipliers and registers occupy only about 5% of the total area in the hardware. The maximum frequency
obtained is high thereby increasing the performance. The real time input which is the audio signal is added with
noise and the desired or the original signal is retrieved back by self-adjusting.

VIII. CONCLUSION
The implementation of a useful adaptive filter is done using FPGA devices. Furthermore, the FPGA
implementation allows the usage in hardware platforms where low power consumption is required. Here we
reduce area consumption and also power consumption by reusing same hardware for various stage of
computations s.In contrast to other devices such as DSP processors, a high data sample rate is achieved by
increasing the frequency of operation, thus throughput is increased.

REFERENCES
[1] Alfredo Rosado-Muñoz, Manuel Bataller-Mompeán, Emilio Soria-Olivas, Claudio Scarante, and Juan F. Guerrero-Martínez, "FPGA

Implementation of an Adaptive Filter Robust to Impulsive Noise: Two Approaches,” Signal Process., vol. 58, no. 3, March 2011.
[2] E. S. Nejevenko and A. A. Sotnikov, “Adaptive modelings for hydroacoustic signal processing.” Pattern Recognit. Image Anal., vol.

16, no. 1, pp. 5–8, Jan. 2006.
[3] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay, Advancesin Network and Acoustic Echo Cancellation. Berlin,

Germany: Springer-Verlag, 2001.
[4] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and J. A. Gómez-Pulido, “An FPGA-based implementation for median filter meeting the

realtime requirements of automated visual inspection systems,” in Proc. 10th Mediterr. Conf. Control Autom.—MED, Lisbon, Portugal,
2002.

[5] E. Soria, J. D. Martín, A. J. Serrano, J. Calpe, and J. Chambers, “Steadystate and tracking analysis of a robust adaptive filter with low
computational cost,” Signal Process., vol. 87, no. 1, pp. 210–215, Jan. 2007.

[6] D. Zhang and H. Li, “A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms,”
IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 551–561, Feb. 2008.

[7] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2008.

ACKNOWLEDGEMENT

J. Malarmannan completed his M.Tech degree in VLSI Design from SRM University,
Kattankulathur,Chennai in 2013. He did his B.E. degree in in the stream of Electronics &
Communication Engineering, Karunya University, Coimbatore. His interests include FPGA based
design and Digital designs.His work is related to DSP based FPGA designs and Digital design.

S.Malarvizhi received Ph.D degree in wireless communication from the College of
Engineering,Gunidy,Anna University, Chennai -25 in 2006. She is currently a professor and Head of
Electronics and Communication Engineering Department , SRM University. Her work is related to
wireless communication and VLSI structures.

J. Malarmannan et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3063

	FPGA Implementation of Adaptive Filterand its Performance Analysis
	Abstract
	Keywords
	I. INTRODUCTION
	II. GENERAL DESCRIPTION OF FPGA BASED SIGNAL PROCESSING
	III.ADAPTIVE ALGORITHM
	IV. FPGA IMPLEMENTATION OF THE FILTER
	V.HARDWARE OPTIMIZATION
	VI.SIMULATION RESULTS
	VII. FPGA IMPLEMENTATION
	VIII. CONCLUSION
	REFERENCES
	ACKNOWLEDGEMENT

