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Abstract— A new wavelet based approximation method for solving the second order differential 
equations arising science and engineering is presented in this paper. Such differential equation is often 
applied to model phenomena in various fields of science and engineering. In this study, shifted second 
kind Chebyshev wavelet (CW) operational matrices of derivatives is introduced and applied for solving 
the second order differential equations with various initial conditions. The key idea for getting the 
numerical solutions for these equations is to convert the differential equations (linear or nonlinear) to a 
system of linear or nonlinear algebraic equations in the unknown expansion coefficients. Some illustrative 
examples are given to demonstrate the validity and applicability of the proposed method. The power of 
the manageable method is confirmed. Moreover the use of the shifted second kind Chebyshev wavelet 
method (CWM) is found to be simple, flexible, efficient, small computation costs and computationally 
attractive. 

Keywords:  Second order differential equation, shifted second kind Chebyshev wavelet method, 
operational matrices, computationally attractive 

I. INTRODUCTION 
Wavelet analysis is a new branch of mathematics and widely applied in signal analysis, image 

processing and numerical analysis etc.  The wavelet methods have proved to be very effective and efficient tool 
for solving problems of mathematical calculus. In recent years, wavelet transforms have found their way into 
many different fields in science, engineering and medicine. It possesses many useful properties, such as 
Compact support, orthogonality, dyadic, orthonormality and multi-resolution analysis (MRA).  Recently, 
wavelets have been applied extensively for signal processing in communications and physics research, and have 
proved to be a wonderful mathematical tool. After discretizing the differential equations in a conventional way 
like the finite difference approximation, wavelets can be used for algebraic manipulations in the system of 
equations obtained which lead to better condition number of the resulting system.  

In the numerical analysis, wavelet based methods and hybrid methods become important tools because 
of the properties of localization. In wavelet based methods, there are two important ways of improving the 
approximation of the solutions: Increasing the order of the wavelet family and the increasing the resolution level 
of the wavelet. There is a growing interest in using various wavelets to study problems, of greater computational 
complexity. Among the wavelet transform families the Haar, Legendre and Chebyshev wavelets deserve much 
attention. The basic idea of Chebyshev wavelet method (CWM) is to convert the differential equations to a 
system of algebraic equations by the operational matrices of integral or derivative. Hariharan and co-workers [1-
4] have introduced the Haar wavelet method for nonlinear reaction-diffusion equations arising in science and 
engineering. Padma et al. [5] have proposed the homotopy analysis method to water quality model in a uniform 
channel. The main goal is to show how wavelets and multi-resolution analysis can be applied for improving the 
method in terms of easy implementability and achieving the rapidity of its convergence. Chebyshev polynomials 
which are the eigen functions of a singular Sturm-Liouville problem have many advantages [6].  

Beginning from 1991, wavelet technique has been applied to solve differential equations. Wavelets, as 
very well-localized functions, are considerably useful for solving differential equations and provide accurate 
solutions. Also, the wavelet technique allows the creation of very fast algorithms when compared with the 
algorithms ordinarily used [7]. 
 In the present paper, the shifted second kind Chebyshev wavelet method (CWM) is used to compute 
the numerical solutions for the second order differential equations arising in science and engineering. These 
Chebyshev wavelets, which consist of Chebyshev polynomials, are given [8]. 
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This work deals with the study of second order differential equation arising in science and engineering. 
Such differential equation is often used to model phenomena in scientific and technological problems.  

Consider the second order differential equations of the form 
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For example, consider the second order initial value problem 
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where α and β are constants. N(y) is a nonlinear term and g(x) is the source term. 
Eq. (2) can be written in canonical form  
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Where is the differential operator L is given by 
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II.  CHEBYSHEV WAVELETS PRELIMINARIES 
It is well known that the second kind Chebyshev polynomials are defined on [-1,1] by  
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These polynomials are orthogonal on [-1,1]. 
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The following properties of second kind Chebyshev polynomials [9] are of fundamental importance in the 
sequel. They are eigen functions of the following singular Sturm-Liouville equation. 
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Where 
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d
D ≡  and may be generated by using the recurrence relation 
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Starting from U0(x) = 1 and U1(x) = 2x, or from Rodrigues formula 
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The following theorem is needed hereafter. 
Theorem 2.1: The first derivative of second kind Chebyshev polynomials is given by  
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A. Shifted second kind Chebyshev polynomials 

 The shifted second kind Chebyshev polynomials are defined on [0,1] by )12()(* −= xUxU nn . All 
results of second kind Chebyshev polynomials can be easily transformed to give the corresponding results for 

their shifted forms. The orthogonality relation with respect to the weight function 2xx − is given by  
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The first derivative Un
*(x) is given by the following corollary. 

Corollary 1: The first derivative of the shifted second kind Chebyshev polynomial is given by 
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B. Shifted second kind Chebyshev operational matrix of derivatives 

 Wavelets constitute of a family of functions constructed from dilation and translation of single function 

called the mother wavelet. When the dilation parameter a and the translation parameter b varies continuously, 

then we have the following family of continous wavelets; 
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Let ),,,()(, tmnktmn ψψ =  is the second kind Chebyshev wavelets. Here ,k n  can assume any positive 
integers, m is the order of second kind Chebyshev wavelet and t is the normalized time. 

It is defind on the interval [0,1] by 

 

'

0
2

1,
2

),2(2
)(

*
2

3

,














 +∈−=

+

otherwise

nn
tntUt kk

k
m

k

mn πψ

        (12)
 

m= 0,1,…..M, n= 0,1,…2k-1. A function f(t) defined over [0,1] may be expanded in terms second kind 

Chebyshev wavelets as  
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If the infinite series is truncated, then it can be written as  
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Where C and ψ(t) are 2k(M+1) x 1 defined by 
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A shifted second kind Chebyshev wavelets operational matrix of the first derivative is stated and proved in the 

following theorem.
 

Theorem 2.2:   

Let  ψ(t)  be the second kind chebyshev wavelets vector defined in Eq.(16). Then the first derivative of the 

vector ψ(t)  can be expressed as 
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 where  D is 2k(M+1) square matrix of derivatives and is defined by 
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in which F is an (M+1) square matrix and its (r,s)th element is defined by  



 +>≥

=
+

otherwise

oddsrandsrrs
F

k

sr ,0
.)(,22 2

,
 

Corollary 2.1. The operational matrix for the nth derivative can be obtained from 
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C. Second- order two-point boundary value problems 

Consider the linear second-order differential equation   
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βα =′= )0(,)0( yy          (21)

 
or the boundary conditions 
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or the most general mixed boundary conditions 

.)1()1(,)0()0(
2121

βααα =′+=′+ ybybyy
      (23) 

S.Padma et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 3095



If we approximate  y(x), f1(x), f2(x) and g(x) in terms of the second kind Chebyshev wavelet basis, then one can 

write 
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where CT, F1
T, F2

T and GT are defined similarly as in (7 ).Relations ( ) and ( ), enable one to 
approximate     

)(xy′  and        )(xy ′′   as 
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Now substitution of relations (24 ) and (25 ) into Eq. (20 ), enable us to define the residual, R(x), of this 

equation as 
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and application of the tau method ( see, Ref.[10]), yields the following (2k(M+1) -2) linear equations in the 

unknown expansion coefficients, cnm, namely 
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Moreover, the initial conditions Eq.(21), the boundary conditions Eq.(22), and the mixed boundary conditions 

Eq.(23) lead respectively, to the following equations 

,)0(,)0( βψαψ == DCC TT          (28) 

βψαψ == )1()0( TT CC                                      (29)
 

and  







=+

=+

βψψ

αψψ

)1()1(

,)0()0(

21

21

DCbCb

DaCa

TT

T

           (30) 

Thus Eq. (27) with the two equations  Eq.(28 ) or (29 ) or (30 ) generate 2k(M+1) a set of linear equations which 
can be solved for the unknown components of the vector C, and hence an approximate spectral wavelets 
solution to y(x) given in Eq.(24) can be obtained. 
D. Nonlinear second-order two-point boundary value problems 

 Consider the nonlinear differential equation 
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           (31) 
Subject to the initial conditions 
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or the most general mixed boundary conditions 

.)1()1(,)0()0(
2121

βααα =′+=′+ ybybyy
 

If we follow the same procedure 
If we follow the same procedure of  Section (2.4) approximate y(x) as in (24) and make use of (18) and (19 ), 
then we obtain 
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To find an approximate solution to y(x), we compute (32) at the first 2k(M+1) – 2 roots of 
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These equations with the two Eqs.  (28 ) or  (29)  or  ( 30) generate 2k(M+1) non linear equations in the 
expansion coefficients Cnm  which can be solved with the aid of Newton’s iterative method. 

III. NUMERICAL EXAMPLES 
Example 1: Consider the Painleve Equation of the form [11] 
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With the initial condition given by  
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We solve the Eq. (33) using the algorithm described in section (2.5) for the case corresponds to M=2, k=0 to 
obtain an approximate solution of u(x). First, if we make use of (18) and  (19), then the two operational matrices 
D and D2 are given respectively by 
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Furthermore, the use of initial conditions in Eq.(33) lead to the two equations 
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0642 210 =+− CCC               (35) 
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The solution of the nonlinear system of Eqs.(35) and (36) gives  
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which is the exact solution. 
Example 2:  We consider the equation 
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Furthermore, the set of initial conditions in (38) lead to the equations 
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Example 3: Consider the nonlinear oscillator problem [12] 
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Theoretical solution u(x) = 1 + cos x 

We solve the Eq.  (44) using the algorithm described in section (2.5) 

Equation takes the form  
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Furthermore, the set of initial conditions in (44) lead to the equations 
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 IV. CONCLUSION 
In this paper we have applied new methods called the shifted second kind Chebyshev wavelet method 

and have used it to derive the exact and approximate analytical solutions of second order differential equations 
arising in science and engineering. We have established that this method is capable of reducing the volume of 
the computational work as compared to the other classical methods. The key idea of this approach is that it 
reduces the differential equations to a system of algebraic equations. Thus, we conclude that the proposed 
method can be considered as nice refinement in existing numerical techniques and might have wide applications. 
Finally, three examples were presented and their numerical results agreed well with the exact solution. 
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