The Rate Hahn Sequence Space

K.Balasubramanian^{#1}, K. Chandrasekhara rao^{*2}

[#]Department of Mathematics, School of Humanities and Sciences, SASTRA University, Thanjavur 613402, India ¹ kbalu@maths.sastra.edu * Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam,India ² kcrao@src.sastra.edu

Abstract— This paper is devoted to the rate space of Hahn sequence space. It is denoted by h_{π} . Some properties of h_{π} are investigated. Recent work on rate spaces is given in [2] and [3]. The space h_{π} with sequences in a Banach algebra is propounded.

Keywords- Sequence spaces, β-dual, BK-space, AK-space, Hahn sequence space.

I. INTRODUCTION

A Notation and Definition (See [5])

We consider sequences in a Banach algebra A with norm || ||.

Let $a = (a_k)$ with $a_k \in A$.

|||a||| is the norm of the sequence.

$$l = \{a: \sum_{k=1}^{\infty} ||a_k|| < \infty\}$$

$$bv = \{a: \sum_{k=1}^{\infty} ||\Delta a_k|| < \infty\}$$

$$c_0 = \{a: \lim_{k \to \infty} a_k = 0\}$$

$$l_{\pi} = \{a: \sum_{k=1}^{\infty} \left\|\frac{a_k}{\pi_k}\right\| < \infty\}$$

$$bv_0 = \{a: \sum_{k=1}^{\infty} ||\Delta a_k|| < \infty, \Delta a_k = a_k - a_{k+1}, \lim_{k \to \infty} a_k$$

 h_{π} is the vector space of all sequences $\{x_k\}$ such that $\sum_{k=1}^{\infty} k \left\| \frac{x_k}{\pi_k} - \frac{x_{k+1}}{\pi_{k+1}} \right\| < \infty$.

It is a Banach space as shown in theorem (2.1).

$$cs = \{a: \sum_{k=1}^{\infty} a_k \text{ exists}\}$$

$$\sigma_0 = \{a: n^{-1} \sum_{k=1}^{\infty} a_k \to 0 (n \to \infty)\}$$

$$\sigma_{\infty} = \left\{a: \sup_{(n)}^{\sup} n^{-1} \|\sum_{k=1}^n a_k\| < \infty\right\}$$

The space **b** is found in [4].

B Result [1]

Let (X,p) and (Y,q) be semi-normed spaces and T: $(X,p) \rightarrow (Y,q)$ be an isometric isomorphism (that is T is an isomorphism and satisfies q(T(x))=p(x) for each $x \in X$). Then (X,p) is complete if and only if (Y,q) is complete. In particular, (X,p) is a Banach space if and only if (Y,q) is a Banach space. The following results are established.

II. MAIN RESULTS

Theorem (2.1):

 h_{π} is a Banach space with the norm $|||x||| = \{||x_0|| + \sum_{(k)} k \left\| \frac{x_k}{\pi_k} - \frac{x_{k+1}}{\pi_{k+1}} \right\| < \infty \}.$

Proof:

Obviously $\sum^{-1}: (h_{\pi}, ||| |||_{h_{\pi}}) \to (l, ||| |||_1), (x_k) \to (x_k - x_{k-1})$ where $x_{-1} \coloneqq 0$ is an isometric isomorphism. Thus $(h_{\pi}, ||| |||_{h_{\pi}})$ is a Banach space because of following result. *Theorem* (2.2):[1]

 (l_{π}, d_1) is a complete metric space with the metric

= 0

$$d_1(x, y) = |||x - y||| \forall x = \left(\frac{x_k}{\pi_k}\right) \text{ and } y = \left(\frac{y_k}{\pi_k}\right) \text{ in } l_{\pi}.$$

Proof:

To prove that (l_{π}, d_1) is complete, we assume that

$$(x^{(n)})$$
 with $x^{(n)} = (x_k^{(n)})$ is a Cauchy sequence in (l_π, d_1) .
Since $l_\pi \subset l_{\frac{1}{\pi}}^{\infty}$ and because for all $x = (\frac{x_k}{\pi_k})$, $y = (\frac{y_k}{\pi_k}) \in l_\pi$ the inequality
 $d_{\infty}(x, y) = \sup_{k \in \mathbb{N}^0} ||x_k - y_k|| \le \sum_{k=0}^{\infty} ||x_k - y_k|| = d_1(x, y)$ holds, $(x^{(n)})$ is also a Cauchy sequence in $(l_{\frac{1}{\pi}}^{\infty}, d_{\infty})$.

However, $\left(l_{\frac{1}{\pi}}^{\infty}, d_{\infty}\right)$ is complete that is $(x^{(n)})$ converges to some $x = (x_k) \in l_{\frac{1}{\pi}}^{\infty}$ relative to d_{∞} .

We now show that $x \in l_{\pi}$ and $\lim_{n \to \infty} d_1(x^{(n)}, x) = 0$ which proves that $(x^{(n)})$ converges (to x) in (l_{π}, d_1) . For any given $\varepsilon > 0$ we choose an $n_0 \in \mathbb{N}$ such that

$$d_1(x^{(n)}, x^{(v)}) < \frac{\varepsilon}{2} \quad (n, v \ge n_0) \tag{1}$$

Since $\lim_{n \to \infty} d_{\infty}(x^{(v)}, x) = 0$ for each $N \in \mathbb{N}$ we can choose a $v_N \in \mathbb{N}$ with $v_N \ge n_0$ such that

$$d_{\infty}(x^{(v)}, x) < \frac{1}{N} \frac{\varepsilon}{2} (v \ge v_N) .$$
⁽²⁾

Thus we get for each given $N \in \mathbb{N}$ and all $n \ge n_0$ and every $v \ge v_N$ the inequalities

$$\begin{split} \sum_{k=0}^{N} \|x_{k}^{(n)} - x_{k}\| &\leq \sum_{k=0}^{N} \|x_{k}^{(n)} - x_{k}^{(\nu)}\| + \sum_{k=0}^{N} \|x_{k}^{(\nu)} - x_{k}\| \\ &\leq d_{1}(x^{(n)}, x^{(\nu)}) + Nd_{\infty}(x^{(\nu)}, x) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ (on account of (1) and (2)).} \end{split}$$

Hence, since $N \in \mathbb{N}$ is given, we have $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0$: $\sum_{k=0}^{\infty} ||x_k^{(n)} - x_k|| \le \varepsilon$ which implies $x^{(n)} - x \in l_{\pi}$ for every $n \ge n_0$, thus $x \in l_{\pi}$ and $\lim_{n \to \infty} d_1(x^{(n)}, x) = 0$ that is $(x^{(n)})$ converges to x.

Theorem-(2.3):

$$\begin{split} h_{\pi} &= l_{\pi} \cap \int (bv)_{\pi} = l_{\pi} \cap \int (bv_{0})_{\pi}. \\ Proof: \\ \text{For } k &= 1,2, \dots \\ k \frac{\Delta a_{k}}{\pi_{k}} &= \frac{a_{k+1}}{\pi_{k+1}} + \Delta \left(\frac{ka_{k}}{\pi_{k}}\right) \\ \text{Hence } a \in h \text{ implies} \\ \infty > \sum_{k=1}^{\infty} k \left\| \frac{\Delta a_{k}}{\pi_{k}} \right\| &\geq \sum_{k=1}^{\infty} \left\| \Delta \left(\frac{ka_{k}}{\pi_{k}}\right) \right\| - \sum_{k=1}^{\infty} \left\| \frac{a_{k+1}}{\pi_{k+1}} \right\|. \end{split}$$
The last series is convergent since $h_{\pi} \subset l_{\pi}. \\ \text{Hence also } \sum_{k=1}^{\infty} \left\| \Delta \left(\frac{ka_{k}}{\pi_{k}}\right) \right\| &< \infty \text{ and therefore } h_{\pi} \subset l_{\pi} \cap \int (bv)_{\pi}. \qquad (4) \\ \text{Conversely (3) implies for } a \in l_{\pi} \cap \int (bv)_{\pi}, \quad \infty > \sum_{k=1}^{\infty} \left\| \frac{a_{k+1}}{\pi_{k+1}} \right\| + \sum_{k=1}^{\infty} \left\| \Delta \left(\frac{ka_{k}}{\pi_{k}}\right) \right\| &\geq \sum_{k=1}^{\infty} k \left\| \frac{\Delta a_{k}}{\pi_{k}} \right\| \text{ and} \\ \lim_{k \to \infty} \frac{a_{k}}{\pi_{k}} = 0. \text{ Thus } l_{\pi} \cap \int (bv)_{\pi} \subset h_{\pi}. \qquad (5) \\ \text{From (4) and (5) we get } h_{\pi} = l_{\pi} \cap \int (bv)_{\pi}. \\ h_{\pi} = (\sigma_{\infty}) \frac{\beta}{\pi}. \end{split}$

Proof:

We know that $h_{\pi}^{\beta} = (\sigma_{\infty})_{\frac{1}{\pi}}^{1}$. Now it is enough to show that h_{π} is a β -dual Köthe space. In fact we know that $h_{\pi} = l_{\pi} \cap \int (bv)_{\pi}$ and as is well known that $l_{\pi} = (c_0)_{\frac{1}{\pi}}^{\beta}$ and $\int (bv)_{\pi} = (d(cs))_{\frac{1}{\pi}}^{\beta}$ since $(bv)_{\pi} = (cs)_{\frac{1}{\pi}}^{\beta}$.

Theorem-(2.5):

 h_{π} is a *BK*-space with *AK*.

Proof:

 l_{π} and $\int (bv_0)_{\pi}$ with the norms $|||a||| = \sum_{k=1}^{\infty} \left\| \frac{a_k}{\pi_k} \right\|$ and $|||a||| = \sum_{k=1}^{\infty} \left\| \Delta \left(\frac{ka_k}{\pi_k} \right) \right\|$ respectively are *BK*-spaces with *AK*. Hence by the known result of the intersection of two *BK*-spaces with *AK* is again a *BK*-space with *AK*, the result follows.

Theorem-(2.6):

(i) $h'_{\pi} = (\sigma_{\infty})_{\frac{1}{\pi}}$ (ii) $(\sigma_0)'_{\pi} = (h)_{\frac{1}{\pi}}$ where h' is the conjugate space of h.

Proof:

(i) We know that h_{π} is a *BK*-space with *AK*. Also we know that $h_{\pi}^{\beta} = (\sigma_{\infty})_{\frac{1}{\pi}}^{1}$. But $h_{\pi}^{\beta} = h'_{\pi}$. Therefore we get $h'_{\pi} = (\sigma_{\infty})_{\frac{1}{\pi}}^{1}$.

(ii) It is known that σ_0 with the norm $|||a||| = \frac{\sup}{(n)} n^{-1} \left\| \sum_{k=1}^n \frac{a_k}{\pi_k} \right\|$ is a *BK*-space with *AK*. Hence again by known result $(\sigma_0)_{\frac{1}{\pi}}^{\beta} = (\sigma_0)_{\frac{1}{\pi}}^{\prime}$. It remains to be shown that $(\sigma_0)_{\frac{1}{\pi}}^{\beta} = h_{\pi}$. But $\int (\sigma_0)_{\pi} = \int ((c_0)_{\pi} + (cs)_{\pi})$. Hence $(\sigma_0)_{\pi} = (c_0)_{\pi} + (d(cs))_{\pi}$ and this implies $(\sigma_0)_{\frac{1}{\pi}}^{\beta} = (c_0)_{\frac{1}{\pi}}^{\beta} \cap (d(cs))_{\frac{1}{\pi}}^{\beta} = h_{\pi}$ since $(c_0)_{\frac{1}{\pi}}^{\beta} = l_{\pi}$ and $(d(cs))_{\frac{1}{\pi}}^{\beta} = \int (bv)_{\pi}$.

Theorem-(2.7):

Let h_{π} be a subspace of a normed space l_{π} . If h_{π} is complete, then h_{π} is closed.

Proof:

Let *x* be a limit point of h_{π} .

Then every open sphere centred on x contains points (other than x) of h_{π} .

In particular, the open sphere $S\left(x,\frac{1}{n}\right)$ where *n* is a positive integer contains a point x_n of h_{π} other than *x*. Thus $\{x_n\}$ is a sequence in h_{π} such that $||x_n - x||| < \frac{1}{n} \forall n$.

 $\Rightarrow \lim_{n\to\infty} x_n = x \text{ in } l_{\pi}.$

 \Rightarrow {*x_n*} is a Cauchy sequence in *l_{\pi}* and hence in *h_{\pi}*.

But h_{π} being complete, it follows that $x \in h_{\pi}$. This proves that h_{π} is closed. *Theorem-(2.8):*

Let h_{π} be a subspace of a Banach space l_{π} . If h_{π} is closed, then h_{π} is complete.

Proof:

Let $\{x_n\}$ be a Cauchy sequence in h_{π} . Then it is so in l_{π} . But l_{π} being complete, $\exists x \in l_{\pi}$ such that $x_n \to x$. Either $x \in h_{\pi}$, then we are done, or each neighbourhood of x contains points $x_n \ (\neq x)$. As such, x is a limit point of h_{π} . But h_{π} being closed, it follows that $x \in h_{\pi}$. Hence the result is proved.

Thus we obtain h_{π} as a subspace of a Banach space l_{π} . Then h_{π} is complete if and only if h_{π} is closed.

III. EXAMPLES

1. Consider the space φ_{π} of sequences $x = \left(\frac{\xi_1}{\pi_1}, \frac{\xi_2}{\pi_2}, \dots, \frac{\xi_n}{\pi_n}, 0, \dots\right)$ in \mathbb{K} where $\frac{\xi_n}{\pi_n} \neq 0$ for only finitely many values of *n*. Clearly $\varphi_{\pi} \subset (c_0)_{\pi} \subset l_{\pi}^{\infty}$ and $\varphi_{\pi} \neq (c_0)_{\pi}$.

But $(c_0)_{\pi}$ is the closure of φ_{π} in $(l_{\pi}^{\infty}, |||. |||_{\infty})$.

Thus φ_{π} is not closed in l_{π}^{∞} and hence φ_{π} is an incomplete normed space equipped with the

norm induced by the norm $|||. |||_{\infty}$ on l_{π}^{∞} .

- 2. For every real number $p \ge 1$ we have $\varphi_{\pi} \subset l_{\pi}^{p} \subset (c_{0})_{\pi}$. But $(c_{0})_{\pi}$ is the closure of l_{π}^{p} in $(c_{0})_{\pi}$ and $l_{\pi}^{p} \ne (c_{0})_{\pi}$. Thus l_{π}^{p} is not closed in $(c_{0})_{\pi}$ and hence l_{π}^{p} is an incomplete normed space when endowed with the norm induced by $|||.|||_{\infty}$ on $(c_{0})_{\pi}$.
- 3. For every real number p = 1 we have $\varphi_{\pi} \subset l_{\pi}^{p}$.

But l_{π}^{p} is the closure of φ_{π} in $(l_{\pi}^{p}, |||, |||_{p})$ and $\varphi_{\pi} \neq l_{\pi}^{p}$.

Thus φ_{π} is not closed in l_{π}^{p} and hence φ_{π} is an incomplete normed space endowed with the norm induced by $|||.|||_{p}$ on l_{π}^{p} .

REFERENCES

- [1] J.Boos, Classical and Modern Methods of Summability, Oxford University Press, Oxford, 1984.
- [2] K. Chandrasekhara Rao, Some Rate Spaces, Demonstratio Mathematica, Vol.XLII, No.4, 815-822, 2009.
- [3] K. Chandrasekhara Rao and B. Sivaraman, On Duals of Some Rate Spaces, Int. Journal of Math. Analysis, Vol.6, 775-782, 2012.
- [4] Gunter Goes and Sigrun Goes, Sequences of Bounded Variation and Sequences of Fourier Coefficients-I, Math.Z.118, 93-102, 1970.
- [5] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.