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Abstract—The concept of lattice plays a significant role in mathematics and other domains where 
order properties play an important role. In fact, a Boolean algebra, which is a special case of a Lattice, is 
of fundamental importance in Computer science. The notion of Fuzzy sets as an extension of Crisp sets is 
a model to handle uncertainty in data. Following it, the notions of fuzzy lattices have been introduced by 
many researchers [1, 11]. One of the approaches is the introduction of a fuzzy partially ordered relation 
on a crisp set which satisfies the lattice property. Intuitionistic fuzzy sets [2] are generalisations of the 
notion of fuzzy sets. So far the notion of Intuitionistic fuzzy lattices has neither been introduced nor 
studied. In this paper, we introduce the notions of intuitionistic fuzzy lattices, intuitionistic fuzzy Boolean 
algebra and study their properties. In this process, we provide an alternate definition of antisymmetric 
property of intuitionistic fuzzy relations and compare it with the existing ones. 

Keyword- Intuitionistic fuzzy set, Intuitionistic fuzzy relation, Intuitionistic fuzzy lattice, Intuitionistic fuzzy 
Boolean algebra 

I. INTRODUCTION 
The notion of fuzzy sets [ 13] and that of fuzzy relations [14 ] have been introduced as extensions of crisp sets 

and crisp relations to model uncertainty in data and information. The concepts of intuitionistic fuzzy sets [2] and 
intuitionistic fuzzy relations [3, 5, 6, 7, 8, 9] are further extensions in this direction and these notions generalise 
the notions of fuzzy sets and fuzzy relations respectively. The special types of relations like equivalence relations 
and partially ordered relations have important applications in mathematics. The notions of lattices in general and 
that of Boolean algebra in particular have important role in Computer science and rely on partially ordered 
relations. The concept of fuzzy lattice has been introduced in many ways [1, 11]. Perhaps the most natural 
approach among all these by defining a partially ordered fuzzy relation over a crisp set is due to Tripathy et al 
[12]. Most importantly, besides the study of several special types of fuzzy lattices, they have introduced the 
concept of fuzzy Boolean algebra. The study of various types of intuitionistic fuzzy relations has been done in 
literature [3, 5, 6, 7, 8, 9]. In this paper we introduce the notions of intuitionistic fuzzy lattice, intuitionistic fuzzy 
Boolean algebra and study their properties and also properties of some special type of such lattices. 

II. FUZZY LATTICES AND FUZZY BOOLEAN ALGEBRAS 
A. Fuzzy Lattices 

We first introduce some preliminary definition, which shall be used to define fuzzy lattices. 
Definition 2.1.1: A fuzzy binary relation R on a set X is a fuzzy partial ordering if and only if it is fuzzy 
reflexive, fuzzy antisymmetric and fuzzy transitive under any fuzzy transitivity. 

 Here, we shall confine ourselves to the max-min transitivity only. There are several other definitions of 
fuzzy transitivity. 

Definition 2.1.2: Let R be a fuzzy partial ordering defined on a set X. Then, for any element x ∈ X, we 
associate two fuzzy sets. The first one is the dominating class of x( [10]) denoted by [ ]xR≥  and is defined as 

[ ](2.1.1) ( ) ( , ),xR y R x y≥ =  

where y ∈ X. In other words, the dominating class of x contains the members of X to the degree to which they 
dominate x. 
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The second one is, the class dominated by x ([10]), denoted by [ ]xR≤  and is defined as 

[ ](2.1.2) ( ) ( , ),xR y R y x≤ =  

where y ∈ X. We have, the class dominated by x contains the elements of X to the degree to which they are 
dominated by x. 
Definition 2.1.3: An element x ∈ X is undominated if and only if R(x, y) = 0 for all y ∈ X and x ≠ y.  X is said 
to be undominating if and only if R(y, x) = 0 for all y ∈ X and x≠y. 
Definition 2.1.4:  For a crisp A of X on which a fuzzy partial ordering R is defined, the fuzzy upper bound set 
of A is the fuzzy set denoted ( ),U R A  and is defined by ([10])  

[ ](2.1.3) ( , ) x
x A

U R A R≥
∈

= . 

Definition 2.1.5: For a crisp subset A of a set X on which a  fuzzy partial ordering R is defined, the fuzzy lower 
bound set  for  A is the fuzzy set denoted by L(R,A) and is defined by 

[ ](2.1.4) ( , ) x
x A

L R A R≤
∈

= . 

Definition 2.1.6: The least upper bound of A with respect to the fuzzy partial ordering relation R is a unique 
element x in ( , )U R A  such that 

(2.1.5) ( , )( ) 0 ( , ) 0U R A x and R x y> > , 

for all elements y in the support of ( , )U R A . 

Note 2.1.1: If there are two such elements x and y then by (2.1.5) we have ( , ) 0 ( , ) 0.R x y and R y x> >
 So, by the antisymmetric property x = y. 
Definition 2.1.7: The greatest lower bound with respect to the fuzzy partial ordering relation R is a unique 
element x in L(R, A) such that 
(2.1.6) ( , )( ) 0 ( , ) 0L R A x and R y x> > , 

for all elements in the support of L(R,A). 
Definition 2.1.8: A crisp set X on which a fuzzy partial ordering R is defined is said to be a fuzzy lattice if and 
only if for any two element set {x, y} in X, the least upper bound (lub) and the greatest lower bound (glb) exist 
in X. 
We denote the lub of {x, y} by x y∨  and the glb of {x, y} by x y∧ . 

Many properties of fuzzy lattices defined this manner are established in [12]. 
B. Fuzzy Boolean algebra 
Boolean algebras have an important role in the application areas like computer since. It is a special kind of 
lattice. So, obviously one can expect fuzzy Boolean algebra to be considered as a special case of fuzzy lattice. 
We define it below ([12]). 
Definition 2.2.1: A complemented distributive fuzzy lattice is called a fuzzy Boolean algebra. 

Definition 2.2.2: Let ( ), , , 0, 1, 'B B= ∧ ∨  be a fuzzy Boolean algebra. For any two elements a and b in B, 

we define the operation ring sum denoted by ⊕  as 

( ) ( )(2.2.1) a b a b a b′ ′⊕ = ∧ ∨ ∧ . 

Definition 2.2.3: In any Fuzzy Boolean algebra ( ), , , 0, 1, 'B B= ∧ ∨ , a ring product   is defined by 

(2.2.2) , ,a b a b a b B= ∧ ∀ ∈  

Definition 2.2.4: A complemented distributive fuzzy lattice B with the binary operation and⊕   is a fuzzy 
Boolean ring with identity 1. 

Definition 2.2.5: Let ( ), ,L ∧ ∨  be a fuzzy lattice with a lower bound 0. An immediate successor of 0 is 
called an atom. 
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Definition 2.2.6: Let ( ), ,L ∧ ∨  be a fuzzy lattice with an upper bound 1. An immediate predecessor of 1 is 
called an antiatom. 

Definition 2.2.7: Let ( ), ,L ∧ ∨  be a fuzzy lattice. An element a ∈ L is said to be join irreducible if 

1 2 1 2(2.2.3) a a a a a or a a= ∨  = = . 

Definition 2.2.8: An element a in a fuzzy lattice ( ), ,L ∧ ∨  is said to be meet irreducible if 

1 2 1 2(2.2.4) a a a a a or a a= ∨  = = . 

III. INTUITIONISTIC FUZZY LATTICES 
We generalise the notion of fuzzy lattices introduced by Tripathy and Chaudhury ([12]) to the setting of 
intuitionistic fuzzy lattices in this section. As is well known fuzzy sets are special cases of intuitionistic fuzzy 
sets. Hence intuitionistic fuzzy sets have better modeling power than the fuzzy sets. Similarly, intuitionistic 
fuzzy lattices are more general than the fuzzy lattices. First we introduce some definitions which we define 
below: 
Definition 3.1: An intuitionistic fuzzy relation is an intuitionistic fuzzy subset of X × Y; that is R given by 
 

(3.1)  { ( , ), ( , ), ( , ) / , },R RR x y x y x y x X y Yμ ν= < > ∈ ∈  
where 
   , : [0,1],R R X Yμ ν × →  

satisfy the condition 0 ( , ) ( , ) 1,R Rx y x yμ ν≤ + ≤  for every ( , ) .x y X Y∈ ×  

Definition 3.2: We say that an intuitionistic fuzzy relations R is  

(3.2) reflexive, if for every x ∈ X, ( , ) 1 ( , ) 0.R Rx x and x xμ ν= =  

(3.3) irreflexive, if for some , ( , ) 1 ( , ) 0.R Rx X x x or x xμ ν∈ ≠ ≠  

(3.4)       antireflexive, if for every , ( , ) 0 ( , ) 1.R Rx X x x and x xμ ν∈ = =  

(3.5)       symmetric, if for every ( , )x y X X∈ ×   

              ( , ) ( , ) ( , ) ( , ).R R R Rx y y x and x y y xμ μ ν ν= =  

 In the opposite case we say R is asymmetric. 
(3.6)       Perfect antisymmetric if for every ( , )x y X X∈ ×  with x y≠ and 

( , ) 0 ( ( , ) 0 ( , ) 1)R R Rx y or x y and x yμ μ ν> = < then 

( , ) 0 ( , ) 1.R Rx y and x yμ ν= =  

(3.7)     transitive if R R R⊆ , where o is max-min and min-max composition, that is 

( ) ( ) ( ){ }, max min , , ,R R Ry
x z x y x yμ μ μ ≥    and 

( ) ( ) ( ){ }, min max , , ,R R Ry
x z x y y zν ν ν ≤   . 

Note 3.1: The definition of perfect antisymmetric given in (3.6) is equivalent to the following: an intuitionistic 
fuzzy relation R is perfect antisymmetric if for every ( , )x y X X∈ ×  

(3.8)      
( ( , ) 0 ( , ) 0) ( ( , ) 1

( , ) 1) .
R R R

R

x y and y x or x y
and y x x y
μ μ ν

ν
> > <

<  =
 

Observation 3.1: First we see that when X is a fuzzy set, R Rν (x, y) = 1-μ (x, y)  and  Rν (y, x) =  

R1-μ (y, x). So that the second half of condition (3.8) reduces to the first part and so we get the corresponding 
definition of antisymmetry of fuzzy set. 
Observation 3.2: Next, we note that when first half of condition (3.8) is true the second half follows. But, when 
the second half holds, we get that ( , ) 0 ( , ) 0.R Rx y and y xμ μ≥ ≥ So, the first half does not follow. To be 
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precise, the second half covers the cases ( , ) 0 ( , ) 0.R Rx y or y xμ μ= = So, we cannot do away with any of 
the parts in (3.8). 
Observation 3.3: Finally, we shall show that (3.6) and (3.8) are equivalent. 

(i) Proof of (3.8) (3.6)  

We have (3.8) is equivalent to 

(3.9)  
( ) ( ( , ) 0 ( , ) 0)

( ( , ) 1 ( , ) 1).
R R

R R

x y x y and y x
and x y and y x

μ μ
ν ν

≠ ¬ > >
¬ < <

 

In (3.9) ' '¬  is the Boolean negation. In addition if ( , ) 0R x y thenμ > from the first expression 

of RHS we get ( , ) 0.R y xμ =  

From the second expression on the RHS we get either both ( , ) 1 ( , ) 1R Rx y and y xν ν= =  or one of 

these is equal to 1 and the other is not. But in this case as ( , ) 0R x yμ > , we cannot have ( , ) 1.R x yν = So, we 

have ( , ) 1.R y xν = Hence, in any case we get ( , ) 1.R x yν =  

On the other hand suppose ( , ) 0 ( , ) 1.R Rx y and x yμ ν= < Then from the second expression on the 

RHS of (3.9), we must have ( , ) 1.R y xν =  Hence, ( , ) 0.R y xμ =  

(ii)Proof of (3.6) (3.8)  

Suppose .x y≠ Then we have two cases. 

Case-1: ( , ) 0.R x yμ >  

In this case we have ( , ) 0 (3.6).R y x byμ = Also ( , ) 1.R y xν = So that RHS of (3.9) is true. 

Case-2: ( , ) 0.R x yμ = Then either ( , ) 1 ( , ) 1.R Rx y or x yν ν= <  

If R Rν (x, y) = 1 then μ (x, y) = 0.So,RHS of (3.9) is true. 

On the other hand if R R Rν (x, y) < 1 then by (3.6) μ (y, x) = 0 and ν (y, x) = 1.So, RHS of (3.9) is true. 

Definition 3.3: An intuitionistic fuzzy relation R on X is said to be all intuitionistic fuzzy partially ordered 
relation if R is reflexive, perfect antisymmetric and transitive; that is (3.2), (3.6) and (3.7) hold. 
Definition 3.4: Let X be a set with an intuitionistic fuzzy partial ordered relation ‘R’ defined over it. Then (X, 
R) is called an intuitionistic fuzzy partially ordered set. 
Definition 3.5: When a intuitionistic fuzzy partial ordering in defined on a set X, two intuitionistic fuzzy sets 
are associated with each element x in X. The first is called the dominating class of x.  We denote it by [ ]xR≥  and 

is defined by 

(3.10)               [ ] ( ) ( ) ( ), 0 { , 0 , 1}.R R RR xy iff x y or x y and x yμ μ μ ν≥∈ > = <  

The second is called the class dominated by x. we denote it by [ ]xR≤  and is defined by 

(3.11)           [ ] ( ) ( ) ( ), 0 { , 0 , 1}.R R RR xy iff y x or y x and y xμ μ μ ν≤∈ > = <  

Definition 3.6: An element x ∈ X is undominated if and only if 

(3.12)  ( ) ( ), 0 , 1R Rx y and x yμ ν= =  for all y∈X and y≠x  

 An element x ∈ X is undominating if and only if 

(3.13)  ( ) ( ), 0 , 1R Ry x and y x for all y X and y xμ ν= = ∈ ≠ . 

Definition 3.7: For a crisp subset A of a set X on which an intuitionistic fuzzy partial ordering R is defined, the 
intuitionistic fuzzy upper bound for A in the intuitionistic fuzzy set denoted by ( ),U R A  and is defined by 
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(3.14)  ( ) [ ], x
x A

U R A R≥
∈

=    

when ‘ ’ denotes intersection of intuitionistic fuzzy sets. 
Definition 3.8: Let A be an intuitionistic fuzzy set. Then by the support set of A, We mean all elements ‘x’ for 
which ( ) ( ) ( ){ }0 0 1A A Ax or x and xμ μ ν> = < . 

Definition 3.9: For a crisp subset A of a set X on which an intuitionistic fuzzy partial ordering R is defined, the 
intuitionistic fuzzy lower bound for A is the intuitionistic fuzzy set denoted by L(R,A) and is defined by 
(3.15)  ( ) [ ], x

x A

L R A R≤
∈

=  . 

Definition 3.10: The least upper bound of A with respect to the intuitionistic fuzzy partial ordering relation R is 
a unique element x in support set of ( ),U R A  such that 

(3.16) For all other y in support set of ( ),U R A  ( ) ( ) ( ){ }, 0 , 0 , 1 .R R Rx y or x y and x yμ μ ν> = <  

Definition 3.11: The greatest lower bound of A with respect to the intuitionistic fuzzy partial ordering relation 
R is a unique element x in the support set of L(R, A) such that 
(3.17) For all other y in the support set of L(R, A) ( ) ( ) ( ){ }, 0 , 0 , 1 .R R Ry x or y x and y xμ μ ν> = <        

Note 3.2: The uniqueness of x in definitions 3.10 and 3.11 follows from the intuitionistic fuzzy antisymmetric 
property of R. We provide the proof for 3.10. The case of 3.11 is similar. 
 Suppose that there are two such elements x and z. Then there are three cases. 

Case (i) If both x and z satisfy ( , ) ( , )( ) 0 ( ) 0L R A L R Ax and zμ μ> >  then ( , ) 0 ( , ) 0.R Rx z and z xμ μ> > So, 
by antisymmetric property x = z. 
Case (ii) If both satisfy ( , ) ( , ) ( , ) ( , )( ) 0, ( ) 1 ( ) 0, ( ) 1L R A L R A L R A L R Ax x and z zμ ν μ ν= < = <  then from 

( , ) ( , )( ) 1 ( ) 1L R A L R Ax and zν ν< <  we get x = z. 

Case (iii) If ( , ) ( ) 0 , ( , ) 0 ( ( , ) 1)L R A R Rx z x which implies z xμ μ ν> > < and ( , ) ( , )( ) 0, ( ) 1L R A L R Az zμ ν= <  

R(which implies ν (x, z) < 1) . So, from ( , ) 1 ( , ) 1R Rz x and z xν ν< <  we get by antisymmetry that x = z. 

Definition 3.12: A crisp set X on which a intuitionistic fuzzy partial ordering R is defined is said to be an 
intuitionistic fuzzy lattice if and only if for any two element set {x, y} in X, the least upper bound (lub) and 
greatest lower bound (glb) exist in X. 
 We denote the lub of {x, y} by x y∨  and glb of {x, y} by x y∧ . 

Example 3.1: Let X = {a, b, c, d, e}. We define an intuitionistic fuzzy relation R over X, given by the matrix: 

                                               
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

(1.0) 7, 2 0,1 0,1 0,1
0, 8 1, 0 0,1 9, 1 0, 8
5, 3 7, 2 1, 0 1, 0 8, 1
0, 8 0,1 0,1 1, 0 0,1
0, 7 1, 8 0, 7 9, 1 1, 0

a b c d e

a
b
c
d
e

⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

  

 Clearly the relation is intuitionistic fuzzy reflexive and intuitionistic fuzzy antisymmetric from its 
definition. Also, it is max-min, min-max transitive (see (3.7)). The following table describes the lub and glb for 
different pain of elements of X. 
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Element pair lub glb 
{a, b} b a 
{a, c} a c 
{a, d} d a 
{a, e} e a 
{b, c} b c 
{b, d} d b 
{b, e} b e 
{c, d} d c 
{c, e} e c 
{d, e} d e 

 So, the set X with intuitionistic fuzzy partial ordering R defined over it as above, is an intuitionistic 
fuzzy lattice. 
Theorem 3.1: In an intuitionistic fuzzy lattice (L, R) for any two elements a, b ∈ L, 

 
( ) ( ) ( ){ }, 0 , 0 , 1R R Ra b or a b and a b

a b a a b b

μ μ ν> = <

⇔ ∧ = ⇔ ∨ =
 

Proof We have 

{ }( ) ( )
( ) ( ){ }

, , 0

, 0 , 0 ( , ) 1 .

L R a b

R R R

a b a a

a b or a b and a b

μ

μ μ ν

∧ =  >

 > = <
  

Conversely, 

  
( ) ( ){ }

[ ]

, 0 , 0 ( , ) 1

( ,{ , }).
R R R

b

a b or a b and a b

a R a L R a b

μ μ ν

≤

> = <

 ∈  ∈
 

This together with ( ), 0R a bμ >  implies that ‘a’ is the glb of {a, b} or a b∧  =a. 

 This completes the proof. 
 The following results which have been established in case of fuzzy lattices can be easily extended to 
the setting of intuitionistic fuzzy lattices as we have shown in proving the above theorem. 
Theorem 3.2: Let (L, R) be an intuitionistic fuzzy lattice. Then the idempotent, commutative, associative 
and absorption properties for the operations and∧ ∨  hold. 

Theorem 3.3: For all a, b, c ∈ L, where (L, R) is an IF-lattice, 

 
( ) ( ) ( ){ }

( ){ ( ) }
, 0 , 0 , 1

, 0 , 0
R R R

R R

a b or a b and a b

a c b c and a c b c

μ μ ν

μ μ

> = <

 ∧ ∧ > ∨ ∨ >
 

     
or ( ) ( ){ ( ) ( ) }, 0, , 0, , 1 , , 1R R R Ra c b c a c b c a c b c a c b cμ μ ν ν∧ ∧ = ∨ ∨ = ∧ ∧ < ∨ ∨ < , 
     . 
Theorem 3.4: For all a ,b ,c ∈ L, where (L,R) is an IF-lattice, 
(i) ( ) ( ){ }, 0 , . 0A Ra b and a cμ μ> >  or ( ) ( ){ , 0, , 1,R Ra b a bμ ν= <  

       ( ) ( ) }, 0, , 1R Ra c a cμ ν= <  

 ( ) ( ){ }, 0 , 0R Ra b c and a b cμ μ ∨ > ∧ >  or 

 ( ) ( ) ( ) ( ){ }, 0, , 0, , 1, , 1R R R Ra b c a b c a b c a b cμ μ ν ν∨ = ∧ = ∨ < ∧ <  

(ii) ( ) ( ){ }, 0 , . 0A Rb a and c aμ μ> <  or ( ) ( ){ , 0, , 1,R Rb a b aμ ν= <  

       ( ) ( ) }, 0 , , 1R Rc a c aμ ν= <  

 ( ) ( ){ }, 0, , 0R Rb c a b c aμ μ ∧ > ∨ >  or 
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( ) ( )
( ) ( )

, 0, , 1,

, 0, , 1
R R

R R

b c a b c a

b c a b c a

μ ν
μ ν

∧ = ∧ <  
 

∨ = ∧ <  
 

Theorem 3.5: For a, b, c ∈L, where (L, R) is an IF-lattice the distributive inequalities hold. 
Theorem 3.6: For all a, b, c ∈ L, where L is an IF-lattice, 

  ( ) ( ) ( )( ), 0 , 0R R
a c a b c a b cμ μ> ⇔ ∨ ∧ ∨ ∧ >  and 

( ) ( ){ }
( ) ( )( ){
( ) ( )( ) }

, 0, , 1

, ,

, 1

R R

R

R

a c a c

a b c a b c a

a b c a b c

μ ν

μ

ν

= <

⇔ ∨ ∧ ∨ ∧ =

∨ ∧ ∨ ∧ <

 

Definition 3.13: An IF-lattice (L, R) is said to be complete if every nonempty subset of L has a lub and glb. 
Definition 3.14: An IF-lattice (L, R) is said to be bounded if ∃ two elements, 0, 1 ∈ L such that 

( ) ( ) ( ){ }0, 0 0, 0 0, 1R R Rx or x and xμ μ ν > = <  and 

( ) ( ) ( ){ },1 0 ,1 0 ,1 1R R Rx or x and xμ μ ν > = <    for all x ∈ L. 

Definition 3.15: IF-lattice (L, R) is said to be distributive if and only if for all a, b, c ∈ L, 

( ) ( ) ( )a b c a b a c∧ ∨ = ∧ ∨ ∧  

and 

( ) ( ) ( )a b c a b a c∨ ∧ = ∨ ∧ ∨  

Definition 3.16: An IF-lattice (L, R) is said to be modular if ( ) ( )a b c a b c∨ ∧ = ∨ ∧  whenever 

( ) ( ) ( ){ }, . 0 , 0 , 1R R Ra c or a c and a cμ μ ν> = <  for all a, b, c ∈ L. 

Definition 3.17: Let (L, R) be a bounded IF-lattice and we denote the lower and upper bounds of L by 0 and 1 
respectively. An element a L′∈  is said to be a complement of a ∈ L if and only 
if 0 1a a and a a′ ′∧ = ∨ = . 

 The following theorems can be proved as in the corresponding crisp cases: 
Theorem 3.7: Every distributive IF-lattice is modular. 
Theorem 3.8: If (L, R) is a complemented distributive IF-lattice then the two De Morgan’s Laws 

( )a b a b′ ′ ′∨ = ∧  and ( )a b a b′ ′ ′∧ = ∨  hold for all a, b ∈ L. 

Example 3.1: We define an intuitionistic fuzzy pentagonal lattice as follows: Let { }1 2 30, , , , 1L a a a= . 
The intuitionistic fuzzy partial ordering relation is defined in terms of the matrix given below. Here the entries 
denote the values of the membership and non-membership function as an ordered pair 
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IFP 0 
1a  2a  3a  

1 

0 (1,0) >0 or 
(0,<1) 

>0 or 
(0,<1) 

>0 or 
(0, <1) 

>0 or 
(0, <1) 
 

1a  (0,1) (1,0) (0,1) - >0 or 
(0, <1) 
 

2a  (0,1) - (1,0) - >0 or 
(0, <1) 
 

3a  (0,1) - - (1,0) >0 or 
(0, <1) 
 

1 (0,1) (0,1) (0,1) (0,1) (1,0) 

Here ‘>0’ means any real number in (0, 1) can be assigned for the membership functional value and there is no 
restriction on the non-membership functional value. 
 Also, (0, <1) means the value of the membership function is zero and that of non-membership function 
in strictly less than 1. 
 Finally, ‘−’ means that no value exists for these slots; that is the values are undefined. 

Example 3.2: We define the intuitionistic fuzzy diamond lattice as follows: Let { }1 2 30, , , , 1L b b b= . The 
intuitionistic fuzzy partial ordering relation is defined in term of the matrix given below: 

 
IFD 0 b1 b2 b3 1 
0 (1,0) >0 or 

(0,<1) 
>0 or 
(0,<1) 

>0 or 
(0, <1) 

>0 or (0, <1) 
 

b1 (0,1) (1,0) - - >0 or (0, <1) 
 

b2 (0,1) - (1,0) - >0 or (0, <1) 
 

b3 (0,1) - - (1,0) >0 or (0, <1) 
 

1 
 

(0,1) (0,1) (0,1) (0,1) (1,0) 

 The interpretations of the entries in the table have some meanings as in case of Example 3.1. In both 
those cases we get an infinite number of such lattices. 
Definition 3.18: An intuitionistic fuzzy chain is an IF-partially ordered set (L, R) in which for two 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

elements a,b  L,  either , 0 , 0 , 1

, 0 , 0 , 1
R R R

R R R

a b or a b and a b or

b a or b a and b a

μ μ ν

μ μ ν

∈ > = <

> = <
 

We state the following two properties: 
Theorem 3.9: Every intuitionistic fuzzy chain is a distributive IF-lattice. 
Theorem 3.10: In a complemented distributed IF-lattice (L, R) ,a b L∀ ∈  

 ( ) ( ) ( ){ }, 0 , 0, , 1R R Ra b or a b a bμ μ ν> = < 0a b′⇔ ∧ = 1a b′⇔ ∨ =  

 ( ) ( ) ( ){ }, 0 , 0 , , 1R R Rb a or b a b aμ μ ν′ ′ ′ ′ ′ ′⇔ > = < . 

IV. INTUITIONISTIC FUZZY BOOLEAN ALGEBRA 
In this section we define a special type of IF-lattice which is called IF-Boolean algebra and establish some of 

its properties. 
Definition 4.1: A complemented distributive IF-lattice is called an IF-Boolean algebra. 
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Every complement IF-lattice is necessarily bounded. So, an IF-Boolean algebra is necessarily bounded. 
We denote it by ( ), , ,0, 1,B B= ∧ ∨ , where B is a distributive bounded IF-lattice with bounds 0 and 1 and 

every element a ∈ B has an unique complement denoted by a′. 

Definition 4.2: Let ( ), , , 0, 1, 'B B= ∧ ∨  be a IF-Boolean algebra. For any two elements a and b in B, we 

define the operation ‘ring sum’ denoted by ⊕  as 

(4.1)   ( ) ( )a b a b a b′ ′⊕ = ∧ ∨ ∧ . 

‘ ⊕ ’ is a well defined operation on B . 

 The following properties of IF-Boolean algebra can be proved as in case of fuzzy Boolean algebra. We 
only state these results. 

Theorem 4.1: Let B  be an IF-Boolean algebra. Then  

(4.2)     ( ) ( ) , ,a b a b a b a b B′⊕ = ∨ ∧ ∧ ∀ ∈  

(4.3)     , ,a b b a a b B⊕ = ⊕ ∀ ∈  

(4.4)     ⊕  is associative 

(4.5)     0 0 ,a a a a B⊕ = ⊕ = ∀ ∈  

(4.6)     1 1 ,a a a a B′⊕ = ⊕ = ∀ ∈  

(4.7)     0,a a a B⊕ = ∀ ∈  

(4.8)     ( ) ( ) ( ) , , ,a b c a b a c a b c B∧ ⊕ = ∧ ⊕ ∧ ∀ ∈  

Definition 4.3: In any IF-Boolean algebra ( ), , , 0, 1, 'B B= ∧ ∨  a ring product (1) is defined by 

(4.9)   a b , ,a b a b B= ∧ ∀ ∈  

Definition 4.4: A complemented distributive IF-lattice B with the binary operations and⊕   is a IF-
Boolean ring with identity 1. 

Theorem 4.2: In a IF-Boolean algebra B , 

(4.10)   0 , ,a b a b a b B⊕ = ⇔ = ∀ ∈  

(4.11)   ( )1 1a a∨ ⊕ =  and 

(4.12)    a  ( )1 0,a⊕ =  for all a ∈ B 

Definition 4.5: Let ( ), ,L ∧ ∨  be an IF-lattice with a lower bound 0. An immediate successor of 0 is called an 
atom. 

 Thus, 0a ≠  is an atom if ( ) ( ){ }, 0 , 0R Ra b and b aμ μ> >  

or ( ) ( ) ( ) ( ){ }, 0 , , 1, , 0, , 1 0R R R Ra b a b b a b a bμ ν μ μ= < = <  =   or b=a, where R is the IF 
partially ordered relation on L. 

Definition 4.6: Let ( ), ,L ∧ ∨  be on IF-lattice with a upper bound 1. An immediate predecessor of 1 is called 
on antiatom. 

 Thus 1a ≠  is an antiatom if ( ) ( ), 1 ,1 0R Ra b and bμ μ> >  1b a or b = = . 

Definition 4.7: Let ( ), ,L ∧ ∨  be an IF-lattice. An element a L∈  is said to be join irreducible if 

(4.13)   1 2 1 2a a a a a or a a= ∨  = =   

a is said to meet irreducible  if  
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(4.14)   1 2 1 2a a a a a or a a= ∧  = = . 

Theorem 4.3: Let ( ), , , 0, 1, 'B ∧ ∨  be a IF-Boolean algebra. Then the following hold: 

(4.15)  a is join irreducible 1 2a a a⇔ = ∨  

     ( )2 1, 0R a aμ > or ( )1 2, 0R a aμ >  or 

     ( ) ( ){ }2 1 2 1, 0 , , 1R Ra a a aμ ν= <  

                ( ) ( ){ }1 2 1 2, 0 , , 1R Ror a aμ ν ν ν= < , 
and 
(4.16)  a is meet irreducible 1 2a a a⇔ = ∧  

      ( )2 1, 0R a aμ >  or ( )1 2, 0R a aμ >  or 

     ( ) ( ){ }1 2 1 1, , , 1R Ra a a aμ ν= <  

     or ( ) ( ){ }2 1 2 1, 0, , 1R Ra a a aμ ν= <  

Theorem 4.4: In any IF-lattice with a lower bound 0, every atom is join irreducible. 

Theorem 4.5: Let ( ), , , 0, 1, 1B ∧ ∨  be a IF-Boolean algebra. Then 0 a B≠ ∈  is an atom if and only if it is 
join irreducible. 

V. CONCLUSIONS 
The notion of Intuitionistic fuzzy lattice introduced in this paper is an extension of the corresponding 

definition of fuzzy lattice introduced in [12]. The advantage in this definition is that we consider a partially 
ordered intuitionistic fuzzy relation is defined over a set, which provides a natural partial ordering instead of the 
earlier cases where an intuitionistic fuzzy set is taken and a normal partially ordered relation is defined. Many 
concepts related to this notion are defined and properties are established. Some of these properties have been 
proved and the others can be proved in a way similar to the fuzzy case. Two special IF-lattices have been defined. 
Another special case and perhaps the most important one that of IF-Boolean algebra is defined and its properties 
are established. Since the intuitionistic fuzzy lattices are more realistic than the fuzzy lattices the results 
established in this paper will cover wider area of applications. The notion of intuitionistic fuzzy Boolean algebra 
will lead to the study of intuitionistic fuzzy Boolean expressions and possibly the notion of intuitionistic fuzzy 
gates can be developed. 
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