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Abstract— In the text books, while solving the circuits with controlled sources using Principle of 
Superposition (POS), controlled sources are not deactivated. Thus POS has not been applied in the ‘true 
sense’ to circuits with dependent sources. It is shown here that POS can be applied in the ‘true sense’ to 
such circuits also, but with caution. POS is applicable to all those circuits with dependent sources as well, 
if it is applicable to these circuits when all the dependent sources are treated as independent sources. We 
have included two such examples: one which cannot be solved only employing series-parallel reduction, 
current voltage division, and Ohm’s law, second which has more than one controlled sources. The method 
based on POS is compared with that based on Miller equivalents and generalized matrix method. It is 
shown that the latter one is the most efficient. It is hoped that the teachers will emphasize that POS can 
be applied, in the true sense, for analysing circuits with controlled sources. The prospective authors 
would include this theory in their future text books. However, they should motivate the students to use 
generalized matrix method for better efficiency. 
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I. INTRODUCTION 

S many as 20 introductory books on circuit analysis [1-20] have been referred to by Leach [21] in order to 
find out if dependent sources can be suppressed while applying the principle of superposition (POS) to 

electrical circuits. He finds that these books either state or imply that superposition of dependent sources is not 
allowed, which, he contends, is a misconception. He finally concludes that POS can be applied to such networks 
also through a formal proof followed by several examples. Unfortunately, the reviewer of his paper [21] cited a 
circuit shown in Fig. 1 where the POS cannot be applied. Leach [21] mentions that the circuit cannot be solved 
by any other method. This will be shown in this paper. 
 

 

Fig. 1. A circuit not solvable by POS. 
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The conditions where POS cannot be applied are stated in [21]. In this paper, we give a general condition on 
the circuits to which POS cannot be applied.  
 
Damper [22] feels there is an error in Leach’s proof [21] but agrees to his final conclusion. Without involving 
Leach’s proof and Damper’s subsequent correction, we provide a simple, but convincing proof. The results are 
verified by the matrix method [23]. 
All the examples in [21] are solved by employing voltage and current division, series-parallel reduction, and 
Ohm’s law. In this paper, it is shown through an example that there are circuits which cannot be solved just by 
using these techniques. One needs to use star/delta transformation, KCL, KVL, or more general matrix method 
[23]. Also we have taken one example which has two controlled sources. Finally, we show that the matrix 
method is more efficient.  
 

II. ANALYSIS OF CIRCUITS WITH CONTROLLED SOURCES USING POS 
 
We prove that POS can be applied in ‘true sense’ in solving the circuits with controlled sources. Here ‘true 
sense’ means that the response due to all the independent and dependent sources is obtained by superimposing 
the responses obtained, considering one source at a time. For convenience, without any loss of generality, we 
take the typical two-node network shown in Fig. 2, with current sources only as it is explained in [21] that 
voltage sources, if present, can be converted into current sources. Using node analysis, one can write  
 

 

Fig. 2. Typical 2 node network. 
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Note that xI and  yI may or may not contain the independent and/or dependent sources depending upon 

the position of the current sources in the circuit. In the circuit shown, node X has the independent current source 
I only while node Y has both the independent current source I and dependent current source KVx. Eqn (1) can be 
rewritten as  

 

(2)

 

where Ri is the response due to the independent source I and Rd is that due to the dependent source kVx. It is 
obvious from eqn (2) that the node voltages can be solved by the POS. For example  

 
Vx = Vx1 +  Vx2  
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where Δ = y11y22 - y12
2. 

 

Here dependent source kVx should be treated as an independent source of value kVx where Vx is the full and final 
value, i.e., when all the sources (independent and dependent) are present. Hence, it can be deactivated without 
reducing the controlling variable Vx to zero while determining the response due to the independent source I, like 
we do not put any current through, or voltage across, any element 0 while deactivating an independent source.  
Solving for Vx from (3), one gets 
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Similarly, from eqn (2), by Cramer’s rule, one gets 
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Substituting for Vx from (4), and simplifying  
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Now we solve the circuit by the matrix method of [23]. Equation (1) can be expressed as  
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which yields 
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On solving one gets 
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and  
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Equations (6) and (7) are the same as eqns (4) and (5), respectively. Thus, we conclude that POS can be applied 
to linear circuits with controlled sources also.  
 
In [21], it is mentioned that POS cannot be applied to networks when all the sources but one are deactivated and 
the resulting circuit contains a node at which the voltage is indeterminate or a branch in which the current is 
indeterminate. In such cases POS cannot be used even if all sources are independent. We state this condition in a 
more general form. POS cannot be applied to circuits with or without independent sources when all the sources 
but one are deactivated, the activated source should not become open if it is a current source or short if it is a 
voltage source. Two examples of such circuits are shown in Figs. 1 and 3 where the current source is opened 
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and the voltage source is shorted, respectively. The circuit in Fig. 1 is solvable when one of the current sources, 
say I3 is a dependent source such that I3 = I1 + I2 (requirement of KCL). If we further make that I3 = gV [21], the 
circuit becomes unsolvable because two constraints on I3 cannot simultaneously be satisfied. Similarly, the 
circuit shown in Fig. 3 is solvable when one of the voltage sources, say VCA, is a dependent source such that VCA 

= -(VAB + VBC) (requirement of KVL), but becomes unsolvable when VCA is also dependent on some other 
voltage or current in the circuit. 

 

Fig. 3. A circuit to which POS cannot be applied.  
 

Example 1: Determine the output voltage Vo in the circuit shown in Fig. 4 [22].  
 

   
 

Fig. 4: Circuit for Example 1. 
 

Applying POS 
 

Vo = V1 (due to the source Vs alone) + V2 (due to the source AVs alone) = 0 + AVs = AVs. 
 

Example 2: Find the current through G2 in Fig. 2 when G1 = 0.8 S, G2 = 0.2 S, G3 = 0.3 S, k = 0.8 S, I = 23 A. 
Applying POS 
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Substituting the values, one gets  
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Note that it is easier to solve for the controlling variable Vx by POS first and then any other voltage or current, if 
required, by any other method including using POS.  
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Example 3: Determine current I in the circuit shown in Fig. 5.  
 

 

Fig. 5. Circuit for Example 3. 

By POS,  
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Example 4: Consider the circuit shown in Fig. 6.  
 

 
 

Fig. 6. Circuit for Example 4. 

 
This circuit cannot be solved by series-parallel reduction, current and voltage division and Ohm’s law. We solve 
it by matrix method [23]. 
 

By POS and using node analysis, one gets 
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This is the correct answer verified by other method.  
 

If a network does not have a single independent source, but has dependent sources only, then from eqn (2), we 
see that Ri = 0 and consequently, Rd will also be zero. It means that, in the absence of any independent source, 
the circuit is dead, i.e., no current through, and voltage across, any element exist, even though the dependent 
source(s) may be present.  
 

While determining Thevenin equivalent of a circuit without any independent source but with dependent source, 
both the open circuit voltage and the short circuit current will be zero as explained above. In such a case, 
Thevenin resistance would be indeterminate using the relation Rth = Voc/Isc =0/0. However, if we connect an 
independent voltage (current) source of value V (I) at the output terminals and find the current I flowing into the 
voltage source (voltage drop V developed across the current source), then Rth = V/I as explained in [24].  
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Example 5: Find the Thevenin equivalent of the circuit across the terminals AB shown in Fig. 7. 
 

 
(a) 

 
(b) 

Fig. 7. (a) Circuit for Example 5 and (b) External voltage source connected. 

We connect a voltage source at the terminals AB. By POS 
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Example 6: Determine the node voltages Va and Vb in the circuit shown in Fig. 8(a). 
 
There are two dependent sources; one is controlled by a voltage Vo and the other by current Io which require the 
evaluation of corresponding difference of two node voltages. Such controlling variables almost double the 
complexity of the solution by POS. Such a problem has not been considered in [21-22]. 
 

  
(a) 

 

 
(b) 

 
Fig. 8. (a) Circuit for Example 6 and (b) reduced circuit. 

 
We apply the node analysis. By POS, one gets 
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From eqns (11) and (13), by Cramer’s rule 
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Substituting the values of Vo and Io in eqns (8) and (9) one gets 
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Now let us solve the same problem by Matrix method [23]. Node analysis gives  
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By Cramer’s rule 
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These are the same as obtained above, but with considerably less effort in solving. 
 

III. COMPARISON WITH OTHER METHODS 
There is a similarity between the methods based on POS and Miller equivalents [25]. In the former method, the 
sources are dependent while in the latter method, the elements are dependent on some parameter. However, in 
both the methods, one has to determine the controlling variables first and then any other desired voltage or 
current. As proved in [23], matrix method is more efficient than the Miller equivalent approach. It is also more 
efficient than the method based on POS. This is proved below.  
 
Let there be N number of unknown nodes and Si and Sd be the number of independent and dependent sources, 
respectively,  in a circuit. We shall compare the number of determinants to be solved by the POS method and 
the matrix method for determining the voltages of N nodes. In POS method, N equations for N node voltages in 
terms of controlling variables are to be written invoking POS. These relations require N(Si + Sd) + 1 
determinants of the order NN  to be solved. After this Sd relations among the controlling variables will be 
determined. Then evaluation of the controlling variables from these relations requires Sd +1 determinants of 
order Sd   Sd to be solved. After this the voltages of N unknown nodes are evaluated. Thus in the above 
example, since N = 2, Si = 1 and Sd = 2, it requires 10 determinants of order 22 to be solved. 
 
Matrix method requires only N + 1 determinants of order NN   to be solved. Thus, it requires only 3 
determinants as against 10 by POS for the circuit of example 6. There is no need to determine the controlling 
variables explicitly. Thus the matrix method is more efficient, easier and straight forward.  
 

IV. CONCLUSION 
 

In the text books [1]-[20], while solving the circuits with controlled source using POS, controlled sources are 
not deactivated. Thus POS has not been applied in ‘true sense’ to circuits with dependent sources. It has been 
shown here that POS can be applied in the ‘true sense’ to such circuits also, but with the following caution: (i) 
All the dependent sources should also be treated as independent sources with their full value (contribution from 
all the sources). (ii) When the dependent source is deactivated, its controlling variable should not be zeroed. 
POS is applicable to all those circuits with dependent sources as well if it is applicable to these circuits when all 
the dependent sources are treated as independent sources. An example which is not solvable by series parallel 
reduction technique, current voltage division, and Ohm’s law alone has been given. Also an example is included 
that has more than one controlled sources. It is hoped that the teachers will emphasize that POS can be applied 
in true sense for analysing circuits with controlled sources. The prospective authors would include this theory in 
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their future text books. However, they should motivate the students to use generalized matrix method for better 
efficiency.   
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