Fixed point theorem in Intuitionistic fuzzy-3 metric space using *weak*^{**} compatibility

M.S. Chauhan^a Bharat Singh^b,*

^a Nehru govt. P. G. Collage, Agar (Malwa) Distt., Shajapur (M P) India

*^b SOC. and E. IPS. Academy Indore (M P) India (<u>bharat_singhips@yahoo.com</u>)

ABSTRACT

The purpose of this paper is to prove a common fixed point theorem in intuitionistic fuzzy -3metric space by studying the relationship between reciprocal continuity for idempotent maps in intuitionistic fuzzy metric space. Our result generalize the Result of Jitendra et al [7] and many others

Key word: fixed point, IFM-space, weak** compatibility

1.INTRODUCTION

The concept of fuzzy sets was introduced by *zadeh* [13] following the concept of fuzzy sets, fuzzy metric spaces have been introduced by kramosil and michlek [9] and George and veeramani [6] modified the notion of fuzzy metric space with the help of continuous t-norms

As a generalization of fuzzy sets, Atanassov [14] introduced and studied the concept of intuitionistic fuzzy sets park[11] using the idea of intuitionistic fuzzy sets defined the notion of intuionistic fuzzy metric spaces with the help of continuous t-norm and continuous t co-norm as a generalization of fuzzy metric space due to George & veeramani [6] had showed that every metric induces an intuitionistic fuzzy metric every fuzzy metric space is an intuitionistic fuzzy metric space and found a necessary and sufficient condition for an intuitionistic fuzzy metric space to be complete choudhary[15] introduced mutually contractive sequence of self maps and proved a fixed point theorem kramosil & michlek [9] introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved the well known fixed point theorem of Banach [4], Turkoglu et al [12] gave the generalization of jungek's common fixed point theorem [19] to intuitionistic fuzzy metric spaces, they first formulate the definition of weakly commuting and R- weakly commuting mapping in intuitionistic fuzzy metric spaces and proved the intuitionistic fuzzy version of pant's theorem[20]

Here we will define *weak*^{**} commuting in intuitionistic fuzzy metric space and reciprocal continuity for idempotent maps in intuitionistic fuzzy metric space. And prove a fixed point theorem in IF-3 metric space. Our result generalize the Result of Jitendra et al [7] and many others

2. Preliminaries

Definition 2.1 [7] A binary operation $* [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t norm if it satisfies the following condition

2.1.1 * is commutative and associative

2.1.2 * is continuous

2.1.3 a * 1 = a for all $a \in [0,1]$

2.1.4 $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0,1]$

Definition 2.2 [7] A binary operation $\Diamond: [0,1] \times [0,1] \rightarrow [0,1]$ is continuous t-conorm if \Diamond is satisfying the following condition

2.2.1 § is commutative and associate

 $2.2.2 \diamond$ is continuous

2.2.3 $a \diamond 0 = a$ for all $a \in [0,1]$

2.2.4 $a \diamond b \leq c \diamond d$ Whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0,1]$

Definition 2.3 [4] the 3-tuple (X, M, *) is called a fuzzy metric space (FM-space) if X is an arbitrary set * is a continuous t-norm and M is a fuzzy set in $X^2 \times [0, \infty]$ satisfying the following conditions for all $x, y, z \in X$ and t, s > 0.

$$2.3.1 \ M(x, y, 0) > 0$$

$$2.3.2 \ M(x, y, t) = 1, \forall t > 0 \ iff \ x = y$$

$$2.3.3 \ M(x, y, t) = M(y, x, t),$$

$$2.3.4 \ M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$$

$$2.3.5 \ M(x, y, .): [0, \infty] \to [0,1] \ \text{is continuous.}$$

Remark 2.4 since * is continuous, it follows from (2.3.4) that the limit of a sequence in FM-space is uniquely determined

Definition 2.5 [16] A five –tuple (X, M, N, *, \diamond) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set * is a continuous t – norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X, s, t > 0$

$$2.4.1 \ M(x, y, t) + N(x, y, t) \le 1$$

$$2.4.2 \ M(x, y, t) > 0$$

$$2.4.3 \ M(x, y, t) = M(y, x, t)$$

$$2.4.4 \ M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$$

$$2.4.5 \ M(x, y, .): (0, \infty) \to (0,1) \text{ is continuous}$$

$$2.4.6 \ N(x, y, t) > 0$$

$$2.4.7 \ N(x, y, t) = N(y, x, t)$$

$$2.4.8 \ N(x, y, t) \& N(y, z, s) \ge N(x, z, t + s)$$

$$2.4.9 \ N(x, y, .): (0, \infty) \to (0,1] \text{ is continuous}$$

Then (M, N) is called an intuitionistic fuzzy metric On X, the function M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t respectively

Remark 2.6 Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space form X, $M, 1 - M, *, \emptyset$) such that t-norm * and t-conorm \emptyset are associated ie $x \land y = 1 - ((1 - x) * (1 - y))$ for any $x, y \in [0,1]$ but the converse is not true

Definition2.7 Two self mappings A and S of an IFM-space(X, M, N, $*, \diamond$) is called *weak*^{**} commuting if $A(X) \subset S(X)$ and for any x in X

 $M(A^2S^2x, S^2A^2x, t) \ge M(A^2x, S^2x, t)$

And

$$N(A^2S^2x, S^2A^2x, t) \le N(A^2x, S^2x, t)$$

Remark 2.8 If A and S are idempotent maps i.e. $A^2 = A$ and $S^2 = S$ then weak commutative reduced to weak commuting pair (A.S)

i.e $M(A^2S^2x, S^2A^2x, t) \ge M(A^2Sx, S^2Ax, t) \ge M(AS^2x, SA^2x, t) \ge M(ASx, SAx, t) \ge M(A^2x, S^2x, t)$ and

 $N(A^{2}S^{2}x, S^{2}A^{2}x, t) \le N(A^{2}Sx, S^{2}Ax, t) \le N(AS^{2}x, SA^{2}x, t) \le N(ASx, SAx, t) \le N(A^{2}x, S^{2}x, t)$

However point wise R-weakly commuting mapping need not be compatible

Definition2.9 Two self mappings A and S which are idempotent maps i.e. $A^2 = A$ and $S^2 = S$ of IFM-space (X, M, N, *, \Diamond) are called reciprocally continuous on X if $lim_{n\to\infty}A^2S^2xn = A^2x$

And $\lim_{n\to\infty} S^2 A^2 xn = S^2 x$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} A^2 xn = \lim_{n\to\infty} S^2 xn = x$ for some x in X i.e

$$M(A^{2}S^{2}xn, S^{2}A^{2}xn, t) \ge M(A^{2}Sxn, S^{2}Axn, t) \ge$$
$$M(AS^{2}xn, SA^{2}xn, t) \ge M(ASxn, SAxn, t) \ge M(A^{2}xn, S^{2}xn, t) \ge M(A^{2}x, S^{2}x, t)$$

and

$$N(A^2S^2xn, S^2A^2xn, t) \le N(A^2xn, S^2Axn, t) \le$$

 $N(\mathrm{A}\mathrm{S}^2\mathrm{xn}, \mathrm{S}\mathrm{A}^2\mathrm{xn}, t) \le N(\mathrm{A}\mathrm{S}\mathrm{xn}, \mathrm{S}\mathrm{A}\mathrm{xn}, t) \le N(\mathrm{A}^2\mathrm{xn}, \mathrm{S}^2\mathrm{xn}, t) \le N(\mathrm{A}^2\mathrm{x}, \mathrm{S}^2\mathrm{x}, t)$

whenever $\{x_n\}$ is a sequence in X such that

 $lim_{n\to\infty}M(A^2xn, S^2xn, t) = M(A^2x, S^2x, t)$ and $lim_{n\to\infty}N(A^2xn, S^2xn, t) = N(A^2x, S^2x, t)$ for all t > 0 thus if two self mappings are *weak*^{**} commuting then they are reciprocall continuous as well

Lemma 2.13[16]. Let $\{y_n\}$ be a sequence in IFM space $(X, M, N, *, \delta)$ with the condition $\lim_{t\to\infty} M(x, y, t) = 1$ and $\lim_{t\to\infty} N(x, y, t) = 0$. If there exist a number $k \in (0,1)$ such that $M(y_{2n+2}, y_{n+1}, kt) \ge M(y_{2n+1}, y_n, t)$ and $(y_{2n+2}, y_{n+1}, kt) \le N(y_{2n+1}, y_n, t)$, for all t > 0, then $\{y_n\}$ is a Cauchy sequence in X **Lemma 2.14**. Let A and B be two self-maps on a complete IFM-space $(X, M, N, *, \delta)$ such that for somek

 $\in (0,1)$, for all $x, y \in X$, for all t > 0

$$M(Ax, Bx, t) \ge \min \{M(x, y, t), M(Ax, x, t)\}$$

and

$$N(Ax, Bx, t) \le \max\{N(x, y, t), N(Ax, x, t)\}$$

Then A and B have a unique common fixed point in X

Proof Let $p \in X$. taking $x_0 = p$, define sequence $\{x_n\}$ in X by $Ax_{2n} = x_{2n+1}$ and $x_{2n+1} = x_{2n+2}$. By taking $x = x_{2n}$, $y = x_{2n+1}$ and $x = x_{2n}$, $y = x_{2n-1}$, respectively, in the contractive condition, we obtain that $M(x_{n+1}, x_n, kt) \ge M(x_n, x_{n-1}, t)$,

And

$$N(x_{n+1}, x_n, kt) \leq N(x_n, x_{n-1}, t)$$
 for all $t > 0$, for all n

Therefore by lemma 2.7, $\{x_n\}$ is a Cauchy sequence in X, which is complete. Hence $\{x_n\}$ converges to some u in X. Taking $x = x_{2n}$ and y = u and letting $n \to \infty$ in the contractive condition, we get Bu = u. Similarly, by putting x = u and $y = x_{2n+1}$, we get Au = u. Therefore, u is the common fixed point of the maps A and B. The uniqueness of the common fixed point follows from the contractive condition

(2.3)

3Main Result

Let $(X, M, N, *, \delta)$ be a complete IF-3 metric space and let F and T be continuous mappings of X in X. Let A be a self mappings of X satisfying [A, F] and [A, T] are *weak*^{**} commuting and

(1)
$$A(X) \subseteq F(X) \cap T(X)$$

(2) $M(A^2x, A^2y, a, b, t) \ge$

$$\varphi[min \begin{cases} M(F^2x, T^2y, a, b, t), M(F^2x, A^2x, a, b, t), M(F^2x, A^2y, a, b, t), \\ M(T^2y, A^2y, a, b, t), M(A^2x, T^2y, a, b, t), \\ M(F^2y, A^2y, a, b, t) \end{cases}$$

and

 $N(A^2x,A^2y,a,b,t) \leq$

$$\Psi[max \begin{cases} N(F^2x, T^2y, a, b, t), N(F^2x, A^2x, a, b, t), N(F^2x, A^2y, a, b, t), \\ N(T^2y, A^2y, a, b, t), N(A^2x, T^2y, a, b, t), \\ N(F^2y, A^2y, a, b, t) \end{cases}]$$

For all $x, y \in X$, where φ and Ψ : $[0,1] \to [0,1]$ are continuous functions such that $\varphi(t) > t$ and $\Psi(t) < t$ for each $0 \le t \le 1$ and $\varphi(1) = 1$ and $\Psi(0) = 0$ and $a, b \in X$. The sequence $\{x_n\}$ and $\{y_n\}$ in X are such that $x_n \to x$, $y_n \to y$ $\Rightarrow M(x_n, y_n, a, b, t) \to M(x, y, a, b, t)$ and $N(x_n, y_n, a, b, t) \to N(x, y, a, b, t)$ where t > 0 then F, T and A

 $\Rightarrow M(x_n, y_n, a, b, t) \rightarrow M(x, y, a, b, t)$ and $N(x_n, y_n, a, b, t) \rightarrow N(x, y, a, b, t)$ where t > 0 then F, T and A have a unique common fixed point in X

Proof we define sequence $\{x_n\}$ and $\{y_n\}$ such that $y_{2n} = A^2 x_{2n} = F^2 x_{2n+1}$ and $y_{2n+1} = A^2 x_{2n+1} = T^2 x_{2n+2}$ for n = 1, 2, ... now we shall prove that $\{y_n\}$ is a Cauchy sequence

Let $G_n = M(y_n, y_{n+1}, a, b, t) < 1$ and $H_n = N(y_n, y_{n+1}, a, b, t) > 0$ for $n = 1, 2 \dots$ then by (2) we have

$$\begin{split} &G_{2n} = M(y_{2n}, y_{2n+1}, a, b, t) = \\ &M(A^2 x_{2n}, A^2 x_{2n+1}, a, b, t) \geq \\ &\varphi[min \begin{cases} &M(F^2 x_{2n+1}, T^2 x_{2n}, a, b, t), M(F^2 x_{2n+1}, A^2 x_{2n+1}, a, b, t), M(F^2 x_{2n+1}, A^2 x_{2n}, a, b, t), \\ &M(T^2 x_{2n}, A^2 x_{2n}, a, b, t), M(A^2 x_{2n+1}, T^2 x_{2n}, a, b, t), \\ &M(F^2 x_{2n}, A^2 x_{2n}, a, b, t) \end{cases} \\ &= \varphi[min \begin{cases} &M(y_{2n}, y_{2n-1}, a, b, t), M(y_{2n}, y_{2n+1}, a, b, t), M(y_{2n}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n}, a, b, t), M(y_{2n+1}, y_{2n-1}, a, b, t), \\ &M(y_{2n-1}, y_{2n}, a, b, t), M(y_{2n+1}, y_{2n-1}, a, b, t), \\ &M(y_{2n-1}, y_{2n}, a, b, t), M(y_{2n+1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n}, a, b, t), M(y_{2n+1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &M(y_{2n-1}, y_{2n-1}, a, b, t), M(y_{2n-1}, y_{2n}, a, b, t), \\ &= \varphi[min \{G_{2n-1}, G_{2n}, 1, G_{2n-1}, G_{2n}, G_{2n-1}, G_{2n-1}, \} \qquad (i) \end{split}$$

and

$$\begin{split} H_{2n} &= N(y_{2n}, y_{2n+1}, a, b, t) = \\ N(A^{2}x_{2n}, A^{2}x_{2n+1}, a, b, t) \leq \\ \Psi[max \begin{cases} N(F^{2}x_{2n+1}, T^{2}x_{2n}, a, b, t), N(F^{2}x_{2n+1}, A^{2}x_{2n+1}, a, b, t), N(F^{2}x_{2n+1}, A^{2}x_{2n}, a, b, t), \\ N(T^{2}x_{2n}, A^{2}x_{2n}, a, b, t), N(A^{2}x_{2n+1}, T^{2}x_{2n}, a, b, t), \\ N(T^{2}x_{2n}, A^{2}x_{2n}, a, b, t), N(A^{2}x_{2n+1}, T^{2}x_{2n}, a, b, t), \\ N(F^{2}x_{2n}, A^{2}x_{2n}, a, b, t) \end{cases} \\ &= \Psi[max \begin{cases} N(y_{2n}, y_{2n-1}, a, b, t), N(y_{2n}, y_{2n+1}, a, b, t), N(y_{2n}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n}, a, b, t), N(y_{2n+1}, y_{2n-1}, a, b, t), \\ N(y_{2n-1}, y_{2n}, a, b, t), N(y_{2n+1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n}, a, b, t), N(y_{2n+1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ N(y_{2n-1}, y_{2n-1}, a, b, t), N(y_{2n-1}, y_{2n}, a, b, t), \\ \end{pmatrix} \\ &= \Psi[max \{H_{2n-1}, H_{2n}, 0, H_{2n-1}, H_{2n-1}, H_{2n-1}, H_{2n-1}, \} \qquad (\text{ii})$$

If $G_{2n-1} \ge G_{2n}$ then $G_{2n} \ge \varphi[G_{2n-1}] > G_{2n-1}$

And if $H_{2n-1} \leq H_{2n}$ then $H_{2n} \leq \Psi[H_{2n-1}] < H_{2n-1}$, a contradiction therefore $G_{2n-1} \leq G_{2n}$ and $H_{2n-1} \geq H_{2n}$ therefore from (1) and (2) we have

$$G_{2n} \ge \varphi[G_{2n-1,}] > G_{2n-1}$$
, and $H_{2n} \le \Psi[H_{2n-1,}] < H_{2n-1}$, (iii)

Thus $\{G_{2n}: n \ge 0\}$ is increasing and $\{H_{2n}: n \ge 0\}$ is decreasing sequence of positive real numbers in

[0, 1] and therefore tend to limits $l_1 \le 1$ and $l_2 \ge 0$, it is clear that $l_1 = 1$ and $l_2 = 0$ because if $l_1 < 1$ and $l_2 > 0$ then on taking limit as $n \to \infty$ in (iii) we get $l_1 \ge \varphi[l_1] > l_1$ and $l_2 \le \Psi[l_2] < l_2$, a contradiction hence $l_1 = 1$ and $l_2 = 0$

Now for any integer m

$$M(y_n, y_{n+m}, a, b, t) \ge M\left(y_n, y_{n+1}, a, b, \frac{t}{m}\right) * \dots \dots * M\left(y_{n+m-1}, y_{n+m}, a, b, \frac{t}{m}\right)$$
$$\ge M\left(y_n, y_{n+1}, a, b, \frac{t}{m}\right) * \dots \dots * M\left(y_n, y_{n+1}, a, b, \frac{t}{m}\right)$$

and

$$N(y_{n}, y_{n+m}, a, b, t) \le N\left(y_{n}, y_{n+1}, a, b, \frac{t}{m}\right) \diamond \dots \dots \dots \diamond N\left(y_{n+m-1}, y_{n+m}, a, b, \frac{t}{m}\right)$$

$$\leq N\left(y_n, y_{n+1}, a, b, \frac{t}{m}\right) \diamond \dots \dots \diamond N\left(y_n, y_{n+1}, a, b, \frac{t}{m}\right)$$

Therefore $\lim_{n\to\infty} M(y_n, y_{n+m}, a, b, t) \ge 1 * 1 * \dots * 1$

Because $\lim_{n\to\infty} M(y_n, y_{n+1}, a, b, t) = 1$, for t > 0

and

 $\lim_{n\to\infty} N(y_n, y_{n+m}, a, b, t) \le 0 \diamond 0 \diamond \dots \dots \diamond 0$, since

$$lim_{n\to\infty}N(y_n, y_{n+1}, a, b, t) = 0 for t > 0$$

Thus $\{y_n\}$ is a Cauchy sequence and by the completeness of X. $\{y_n\}$ converges to $u \in X$. So its subsequences $\{A^2x_{2n+1}\}, \{T^2x_{2n}\}$ and $\{F^2x_{2n+1}\}$ also converges to same point u.

Since [*A*, *F*] is weak^{**} commuting so

$$M(A^{2}F^{2}x_{2n+1}, F^{2}A^{2}x_{2n+1}, a, b, t) \ge M(A^{2}x_{2n+1}, F^{2}x_{2n+1}, a, b, t)$$

and

$$N(A^{2}F^{2}x_{2n+1}, F^{2}A^{2}x_{2n+1}, a, b, t) \leq N(A^{2}x_{2n+1}, F^{2}x_{2n+1}, a, b, t)$$

On taking limit as $\rightarrow \infty$, $A^2 F^2 x_{2n+1} = F^2 A^2 x_{2n+1} = F^2 u$, now we will prove that $F^2 u = u$

First suppose that $F^2 u \neq u$ then there exist t > 0 such that $M(F^2 u, u, a, b, t) < 1$ and $N(F^2 u, u, a, b, t) > 0$

Now

$$\begin{split} & \mathcal{M}(A^{2}F^{2}x_{2n+1},A^{2}x_{2n},a,b,t) \geq \\ & \varphi[\min \left\{ \begin{matrix} \mathcal{M}(F^{3}x_{2n+1},T^{2}x_{2n},a,b,t),\mathcal{M}(F^{3}x_{2n+1},A^{2}F^{2}x_{2n+1},a,b,t),\mathcal{M}(F^{3}x_{2n+1},A^{2}x_{2n},a,b,t), \\ \mathcal{M}(T^{2}x_{2n},A^{2}x_{2n},a,b,t),\mathcal{M}(A^{2}F^{2}x_{2n+1},T^{2}x_{2n},a,b,t), \\ \mathcal{M}(F^{2}x_{2n},A^{2}x_{2n},a,b,t),\mathcal{M}(F^{2}x_{2n},a,b,t), \end{matrix} \right\} \end{split}$$

This implies

$$M(F^{2}u, u, a, b, t) \geq \varphi[min \begin{cases} M(F^{2}u, u, a, b, t), M(F^{2}u, F^{2}u, a, b, t), M(F^{2}u, u, a, b, t), \\ M(u, u, a, b, t), M(F^{2}u, u, a, b, t), \\ , M(F^{2}u, u, a, b, t) \end{cases}$$

and

$$\begin{split} & N(A^2F^2x_{2n+1},A^2x_{2n},a,b,t) \leq \\ & \Psi[max \left\{ \begin{matrix} N(F^3x_{2n+1},T^2x_{2n},a,b,t), N(F^3x_{2n+1},A^2F^2x_{2n+1},a,b,t), N(F^3x_{2n+1},A^2x_{2n},a,b,t), \\ & N(T^2x_{2n},A^2x_{2n},a,b,t), N(A^2F^2x_{2n+1},T^2x_{2n},a,b,t), \\ & & , N(F^2x_{2n},A^2x_{2n},a,b,t) \end{matrix} \right\} \end{split}$$

This implies

$$N(F^{2}u, u, a, b, t) \leq \Psi[max \begin{cases} N(F^{2}u, u, a, b, t), N(F^{2}u, F^{2}u, a, b, t), N(F^{2}u, u, a, b, t), \\ N(u, u, a, b, t), N(F^{2}u, u, a, b, t), \\ N(F^{2}u, u, a, b, t), \end{cases}$$

This implies that $M(F^2u, u, a, b, t) \ge \varphi[M(F^2u, u, a, b, t)] > M(F^2u, u, a, b, t)$

and $N(F^2u, u, a, b, t) \le \Psi[N(F^2u, u, a, b, t)] < N(F^2u, u, a, b, t)$ which is a contradiction therefore $F^2u = u$. Thus *u* is a fixed point of *F*. Similarly we can show that u is also a fixed point of A. Now we claim that u is a fixed point of T. suppose it is not so then for any t > 0 $M(u, T^2u, a, b, t) < 1$ and $N(u, T^2u, a, b, t) > 0$ now

$$M(A^{2}u, A^{2}T^{2}x_{2n}, a, b, t) \geq \varphi[min \begin{cases} M(F^{2}u, T^{3}x_{2n}, a, b, t), M(F^{2}u, A^{2}u, a, b, t), M(F^{2}u, A^{2}T^{2}x_{2n}, a, b, t), \\ M(T^{3}x_{2n}, A^{2}T^{2}x_{2n}, a, b, t), M(A^{2}u, T^{2}x_{2n}, a, b, t), \\ M(F^{2}T^{2}x_{2n}, A^{2}T^{2}x_{2n}, a, b, t), \end{pmatrix}$$

and

$$N(A^{2}u, A^{2}T^{2}x_{2n}, a, b, t) \leq \Psi[max \begin{cases} N(F^{2}u, T^{3}x_{2n}, a, b, t), N(F^{2}u, A^{2}u, a, b, t), N(F^{2}u, A^{2}T^{2}x_{2n}, a, b, t), \\ N(T^{3}x_{2n}, A^{2}T^{2}x_{2n}, a, b, t), N(A^{2}u, T^{2}x_{2n}, a, b, t), \\ N(F^{2}T^{2}x_{2n}, A^{2}T^{2}x_{2n}, a, b, t), \end{cases}$$

This implies that

$$M(u, T^{2}u, a, b, t) \geq \varphi[\min \begin{cases} M(u, T^{2}u, a, b, t), M(u, u, a, b, t), M(u, T^{2}u, a, b, t), \\ M(T^{2}u, T^{2}u, a, b, t), M(u, T^{2}u, a, b, t), \\ M(T^{2}u, T^{2}u, a, b, t), M(u, T^{2}u, a, b, t), \end{cases}$$

and

$$N(u, T^{2}u, a, b, t) \leq \Psi[max \begin{cases} N(u, T^{2}u, a, b, t), N(u, u, a, b, t), N(u, T^{2}u, a, b, t), \\ N(T^{2}u, T^{2}u, a, b, t), N(u, T^{2}u, a, b, t), \\ N(T^{2}u, T^{2}u, a, b, t), N(u, T^{2}u, a, b, t), \end{cases}$$

This implies that $M(u, T^2u, a, b, t) \ge \varphi[M(u, T^2u, a, b, t)] > M(u, T^2u, a, b, t)$

and $N(u, T^2u, a, b, t) \le \Psi[N(u, T^2u, a, b, t)] < N(u, T^2u, a, b, t)$

Which is a contradiction therefore $T^2u = u$ hence u is a fixed point of T.

I.E. u is a common fixed point of T, F and A

Uniqueness suppose there is another fixed point $v \neq u$ then

 $M(A^2u,A^2v,a,b,t)\geq$

$$\varphi[min \begin{cases} M(F^{2}u, T^{2}v, a, b, t), M(F^{2}u, A^{2}u, a, b, t), M(F^{2}u, A^{2}v, a, b, t), \\ M(T^{2}v, A^{2}v, a, b, t), M(A^{2}u, T^{2}v, a, b, t), \\ , M(F^{2}v, A^{2}v, a, b, t) \end{cases} \end{cases}$$

and

$$N(A^2u, A^2v, a, b, t) \leq$$

$$\Psi[max \begin{cases} N(F^{2}u, T^{2}v, a, b, t), N(F^{2}u, A^{2}u, a, b, t), N(F^{2}u, A^{2}v, a, b, t), \\ N(T^{2}v, A^{2}v, a, b, t), N(A^{2}u, T^{2}v, a, b, t), \\ N(F^{2}v, A^{2}v, a, b, t) \end{cases} \end{cases}$$

This implies that

$$M(u, v, a, b, t) \ge \varphi[\min \begin{cases} M(u, v, a, b, t), M(u, u, a, b, t), M(u, v, a, b, t), \\ M(v, v, a, b, t), M(u, v, a, b, t), \\ , M(v, v, a, b, t), \\ M(v, v, a, b, t) \end{cases}$$

and

$$N(u, v, a, b, t) \leq \Psi[max \begin{cases} N(u, v, a, b, t), N(u, u, a, b, t), N(u, v, a, b, t), \\ N(v, v, a, b, t), N(u, v, a, b, t), \\ N(v, v, a, b, t), N(v, v, a, b, t), \end{cases}$$

This implies that $M(u, v, a, b, t) \ge \varphi(M(u, v, a, b, t))$ and $N(u, v, a, b, t) \le \Psi(N(u, v, a, b, t))$

A contradiction so u = v hence A, F and T have unique common fixed point

References

- [1] R. vasuki, common fixed points for R-weakly commuting maps in fuzzy metric spaces Indian J. pure Appl.math.30:4(1999), 419-423
- [2] C.alaca, D. Turkoglu and C. yildiz, fixed points in intuitionistic fuzzy metric space Chaos .solution, & fractals.29(2006),1073-1078
- [3] Z.K.deng, fuzzy pseudo-metric spaces, J.Math, Anal, Appl, 86, (1982), 74-95
- [4] S. Banach, theories, lies, operations. Laniaries Manograie Mathematyezene, warsaw, Poland, 1932
- [5] M.A Erceg, metric space in fuzzy set theory, J. math.Anal.Appl.69(1979),338-353
- [6] A. George and P. Veeramanion some results in fuzzy metric space Fuzzy set and system, 64. (1994), 395-399
- [7] Jitendra singhi, Ramakant bharadwaj, sarvesh agrawal and Rajesh shrivastava. Fixed point theorem in fuzzy metric spaces, Int. math.forum, 5, 2010, no, 30, 1473-1480
- [8] O. Kaleva and S. Sekkala. On fuzzy sets and system 12(1984), 215-229
- [9] I.Kramosil, and J. Michalek, fuzzy metric and statistical metric space. Kybernetik,. 11(1975), 326-334
- [10] D.Mihet, on fuzzy contractive mapping in fuzzy metric spaces fuzzy set and systems .158(2007), 915-921
- [11] J.H.Park, intuitionistic fuzzy metric spaces, Chaos, solutions & fractals 22(2004), 1039-1046
- [12] D.Turkoglu, I. Altun, and Y.J.cho, common fixed points of compatible mappings of type (I) and (II) in fuzzy metric spaces, J. fuzzy math. 15(2007), 435-448
- [13] L.A.Zadeh, fuzzy sets. Inform.and control 8, (1965) 338-353
- [14] K.Atarassov, intuitionistic fuzzy sets, fuzzy set and system 20(1986), 87-96
- [15] B.S Choudhary, a unique common fixed point theorem for sequence of self maps in menger spaces Bull. Korean math. soc. 37(2000), no.3, 569-575
- [16] S. Kutukchu, D. Turkoglu and C.Yildiz, common fixed points of compatible maps of type (β) on fuzz metric space commun. Korean math. soc. 21(2006) no. 1, 89-100
- [17] S.Sharma and J.K Tiwari, common fixed point in fuzzy metric space, J. Korean soc. math .Educ. Ser. B. pure .Appl. Math. 12(2005), no, 1.17-31
- [18] D. Turkoglu, S. Kutukcu and C. Yildiz, common fixed points of compatible maps. Of type (α) on fuzzy metric space, Int. J. Appl. Math.18 (2005), no. 2
- [19] G. Jungck, commuting mappings and fixed points Amer. Math. Monthly, 83(1976), 261-283
- [20] R.P. Pant, common fixed points of non commuting mappings, J. Math .Anal. Appl. 188(1994), 436-440
- [21] B.Schweizer, and A. Skalar, statistical metric spaces pacific J. Math. 10(1960), 314-334
- [22] Ishak, Altun, and Duran, Turkoglu. A common fixed point theorem for a sequence of self maps in IFM-space, commun Korean maths, soc 21, (2006), N 4 pp, 679-687
- [23] Seon hoon cho On common fixed point theorem in fuzzy metric space . international mathematical foeum 1, 2006, no, 29 1441-1451
- [24] J.H. park, Y.C kwun, and J. H. Park, A fixed point theorem in the intuitionistic fuzzy metric spaces, far east J. Math. Sci. 16 (2005), 137-149
- [25] Cihangir, Ishak Altun, and Duran Turkoglu, On compatible mappings of type (I) and (II) in IFM-spaces, commun. Korean. Math. Soc.23 (2008), No.3 pp. 427-446
- [26] Servet kutukcu, A common fixed point theorem for a sequence of self maps in IFM-space, commun.korean math, soc, 21 (2006), no.4, pp, 679-687
- [27] Y.C kwun, and J. H. Park, A fixed point theorem in the intuitionistic fuzzy metric spaces, far east J. Math. Sci. 16 (2005), 137-149
- [28] R.K. Saini and Mohit kumar, common fixed point theorems in fuzzy metric space using implicit relations