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 Abstract- In this paper, a multi-repairmen machine repair 
problem comprising of M operating units together with k type of 
warm spares has been investigated. The failed units are 
immediately attended by repairmen if available. When there are 
no failed units in the queue for repair, the repairmen leave for a 
vacation of random length. When the vacation period is 
terminated, the repairmen return and check for any failed unit in 
the queue. If the queue is non-empty, the repairmen start 
repairing of failed units until the queue becomes empty, and 
again they leave for another vacation. The repair rate of the 
repairmen depends upon the workload. The caretaker of the 
failed machines may renege on finding all repairmen busy. The 
steady state queue size distribution and other important 
performance measures have been derived using matrix recursive 
approach. Furthermore, a numerical example provides a 
profound understanding of the sensitivity of parameters with 
respect to various performance measures. 
Keywords: Machine repair, Multi-repairmen, Warm spares, 
Reneging, Multiple vacations, Matrix recursive approach, 
Queue size.     

I. INTRODUCTION 

The machining systems have pervaded every field of our 
lives in different activities as such ensuring our almost total 
dependence on them. As the time progresses, a machine 
becomes prone to failure. The failure of machines may result 
in loss of production, money, goodwill etc.. This situation can 
be handled by providing spare part support and corrective 
maintenance provided by the repairman. 

In modern context, the failure and repair are coupled events 
in a typical machining system. Many researchers have 
suggested the provision of repair crew and spare part support 
to ensure the desired efficiency of the machining system. The 
important contributions in the areas of machine repair problem 
are due to [1], [12], [15] and many others. Cost benefit 
analysis of series system with warm standby components was 
done by [16] and [17]. [5] analyzed an M/M/C interdependent 
machining system with mixed spares and controllable failure 
and repair rates. [6] examined a manufacturing system 
consisting of M operating units and S spares under the 
supervision of a group of repairmen. 

As soon as a machine is failed, it is sent to repair facility. In 

case, when all repairmen are busy and there is a long queue of 
failed units, a newly failed unit may not like to join the queue 
(i.e. balk) or may leave the system after spending some time 
in queue (i.e. renege) due to impatience or otherwise. Hence, 
while developing a realistic queueing model for machine 
repair problem, it becomes mandatory to include the 
discouragement behavior of the failed units too. Some notable 
works in this regard are as follows. [2] investigated machine 
repair problem with balking, reneging and warm spares. 
M/M/R machine repair problems with balking and reneging 
were studied by [7] and [11] for cost analysis purpose. The 
probabilistic analysis of a repairable machining system using 
warm spares with balking and reneging concepts was done by 
[14]. Machine repair system with standby components, 
balking and reneging was investigated by [4] using diffusion 
process. 

Queueing systems with vacations have many applications in 
machining systems working in industrial environment such as 
manufacturing and production systems. When there is no 
failed unit present in the system; what should a repairmen do? 
The answer is, instead of remaining idle during this period, the 
repairmen may go for a vacation and can utilize this time to do 
some ancillary work such as preventive maintenance, proper 
arrangement of tools etc.. Over last three decades, a 
substantial amount of work has been done to examine 
queueing systems with vacations. 

Machine interference problem with warm spares, server 
vacations and exhaustive service was tackled by [3]. [18] 
analyzed a multi-server queueing system in which d (≤c) out 
of total c servers take synchronous vacations at a service 
completion instant. The stationary distributions of queue 
length and waiting time were obtained with the help of matrix 
geometric method. Later, [13] incorporated a two-threshold 
vacation policy in multi-server queueing systems and by using 
matrix analytic method, obtained stationary queue size 
distribution. A Markovian queue with two heterogeneous 
servers and multiple vacations was analyzed by [9]. They used 
matrix geometric approach to calculate queue length 
distribution and mean system size. [10] used matrix geometric 
approach to obtain steady state solution of GI/Geo/1 queue 
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with working vacations and vacation interruption.  
The scarcity of the works related to multi-repairmen 

problem with spares and vacations motivated us to develop 
multi-repairmen machine repair model with multiple 
vacations. By incorporating k- type of warm spares along with 
the concepts of common cause failure and reneging factor, the 
model becomes more robust and realistic. Recently, a 
comparable M/M/R model was developed by [8], who used 
two types of warm spares to assist the system, along with 
single and multiple vacation policies. The investigation has 
been organized in different sections as follows. In section II, 
the model has been described by stating the requisite 
assumptions and notations for mathematical formulation 
purpose. The state dependent failure and repair rates along 
with the system states notations are given in section III and 
the balance equations governing the model have been 
constructed. The matrix method to evaluate the probabilities 
has been presented in section IV. For various performance 
measures explicit expressions have been established in section 
V. Some special cases have been discussed in section VI. 
Numerical results and sensitivity analysis have been provided 
in section VII. Finally, the concluding remarks have been 
made in section VIII.  
 

II. MODEL DESCRIPTION 

Consider a multi component machining system having 
operating units as well as k-type of warm spares and a repair 
facility consisting of C repairmen. For the mathematical 
formulation of the model, we assume that 
There is provision of Si (i=1, 2,…, k) spare units of ith type 
along with M  operating units. 
 The operating units and ith type spare units fail in 

Poisson fashion with   rateand i , i = 1,2,3,…,k , 
respectively. Also k. 

 The machining system can also fail due to some 
common cause in Poisson fashion with rate c. 

 The failed unit is immediately replaced by an available 
spare of higher failure rate and sent to repair facility. 

 The switch over time from standby state to operating 
state is considered negligible.  

 After being repaired, the unit joins the operating group 
if the system works with less than M units otherwise 
put with the standby group. 

 The repair time of failed units is assumed to be 
exponentially distributed. 

 The repairmen repair the failed units with rate  till 
there are n<C failed units in the system and with faster 
rate 1 when the number of failed units becomes equal 
or exceeds the number of repairmen i.e. n≥C. 

 When the repairmen becomes idle, he leaves for a 
vacation; the vacation time is exponentially distributed 
with rate  

 The repairmen after returning from vacation check for 
any failed unit in the queue; if any, it is repaired, 
otherwise repairmen leave for another vacation. This 

trend continues, until the repairmen find any failed unit 
in the queue, on returning from vacation.  

The failure and repair rates are given by  
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The system states are represented in the form (i,j) where,  i 
denotes the number of busy repairmen and j is used to denote 
the number of failed machines. 
We denote the probabilities of state (i,j) by Xi,j  
 

III. THE GOVERNING EQUATIONS 

The steady state equations governing the model for different 
states of the servers are constructed as follows: 
 

A. When all repairmen are on vacation i.e.  i=0. 

0XX 1,10,00                                                                   …(3) 
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B. When some repairmen are on vacation i.e. 1  i  C-1 
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C. When all repairmen are busy in providing repair, i.e.  
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i=C. 
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IV. MATRIX RECURSIVE METHOD 

Consider an irreducible Markov chain with transition 
probability matrix Q which can be represented in the 
following block tri-diagonal structure. 
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The matrix Q is a square matrix and of order (K+1) (C+1)-
C(C+1)/2 and is composed of following sub-matrices 
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For  0 ≤ i ≤ C-1 
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The dimensions of D0, Di, Ui and Li are (K+1)(K+1), (K+1-
i)(K+1-i), (K+1-i)(K-i) and (K+1-i)(K+2-i), respectively. 
The stationary probability vector X = [X0, X1, X2,…, XC], 
where, Xi ={Xi,i , Xi,i+1, Xi,i+2 , …, Xi,K} for 0  i  C is a 
1(K+1-i) vector and is evaluated using XQ=0 along with the 
normalizing condition 

                                        



C

0i

i 1eX                                    …(14) 

Here e is column vector with all elements equal to one. 

Computation of stationary probabilities 

The balance equations (3)-(13) can be written in matrix form 
as follows:  
X0D0+X1L1=0                                                                                           …(15) 
Xi-1Ui-1+Xi Di+Xi+1Li+1=0,       1Ci1                                                …(16) 
XC-1UC-1+XCDC=0                                                                                     …(17) 
Xi  can be obtained by solving the above equations in terms of 
X0 as  
Xi = Xi-1ηi,  1Ci1                                                                           …(18) 

where the stationary probability vector Xi is a function of 
transition rates between ith state and its preceding state 
Equation (17) gives 

1
C1C1CC DUXX 

                                                             …(19) 
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Putting i=1 in equation (18) and using equation (15), we have 
X0 (D0+L1η1) = 0                                                                                      …(20) 
where 

1
1i1ii1ii )LD(U 
   ; for i= 1,2,..,C-1                        …(21) 

Also we have 1
C1CC DU 

                                              …(22) 

X0 can be obtained by using equation (14). With the help of 
eqs (18) and (19), we evaluate the probability vector Xi 

(i=1,2,…,C).   

V. PERFORMANCE MEASURES 

Various performance measures of machining system in 
terms of probabilities can be obtained. Now we establish some 
results as follows: 
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 The expected number of spare units of type 1 acting as 
standby is  
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 The expected number of j (j = 1,2,…,k-1) type spare 
units in the system acting as standby is given by  
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 The expected number of spare units acting as standby is  
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 The expected number of busy repairmen in the system  
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 The expected number of vacationing repairmen in the 
system is obtained as  
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 Machine availability is evaluated as 
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 The effective failure rate is given by 
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VI. SPECIAL CASES 

Here we present some earlier existing results as special 
cases, which have been deduced by setting appropriate 
parameters in our model. 
Case 1:   By setting = 0, 1, 2,…, k=and, our 

model matches with the M/M/R  machine repair 
model with warm spares, which was developed by 
Sivazlian and Wang (1989). 

Case 2:  When C=1, k=2, 1= 2 = c0and, our 
model reduces to M/M/1 machine repair model 
with spare and server multiple vacations 
considered by Gupta (1997). 

Case 3:  Putting = 0, 1, 2,…, k=,, K=L and 
S=K-1, we obtain classical    M/M/R/M/M 
queueing model (cf. Gross and Harris, 1985). 

Case 4:   If k=2, c=0, =0 then our model corresponds to 
machine repair model with two type spares and 
multiple vacation policy which was recently 
developed by Ke and Wang (2007).  

VII. NUMERICAL EXPERIMENT 

In this section, the effects of varying parameters on various 
performance measures such as E(O), E(S), E(B), E(V), E(N) 
and M.A. have been displayed through tables and graphs. For 
numerical calculations we set default parameters as M=10, 
C=4, S1=1, S2=2, S3=3, c=0.05, 1= 0.3, 2= 0.2, 3= 0.1. 
Tables I and II display the effect of  and  on E(O), E(S), 
E(B) and E(V) by varying . It is noticed that E(O), E(S) and 
E(V) decrease (increase) while E(B) increases (decreases) as  
() increases. When the effect is observed for increasing 
values of table I shows that E(O), E(S) and E(B) increase 
but E(V) decreases whereas it is clear from table II that E(O), 
E(S) and E(V) increase while E(B) decreases.  

Figs 1 and 2 depict, the effect of on E(N) and M.A. by 
varying values of and respectively. For the increasing 
values of , E(L) shows a sharp increasing trend while M.A. 
displays decreasing trend. Fig. 1(a) shows a reasonable 
increment in E(N) with the increasing server’s failure rate (). 
As the vacation () starts increasing, a notable downfall in 
queue length can be observed in fig 1(b). In fig. 1(c), we note 
that the queue size is not much affected by the increasing 
values of reneging parameter and it comes down slightly. Figs 
2(a)-(c) exhibit the trend of M.A. for increasing values of 
and, respectively. From fig. 2(a), it is noted that M.A. 
becomes lessen for increasing values of Whenthe 
repairmen start returning from vacation frequently i.e.  
increases, M.A. also increases remarkably, as can be observed 
from fig. 2(b). In fig. 2(c), the impact of varying reneging 
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parameter is very slight which was also observed in case of its 
effect on E(N) in fig. 1(c). Overall, we conclude that 
 As we expect, with the increasing failure rate, the 

queue of failed units build up with fast pace whereas 
the availability of operating units and spares ceases as 
such more repairmen become busy.   

 As the rate of returning of vacationing repairmen 
increases, the repair process speeds up which helps in 
the reduction of queue length; as a result, the operating 
units and spares start accumulating.  

VIII. CONCLUDING REMARKS 

In this investigation, we have developed a performance 
model for a multi-component machining system with multiple 
repairmen and common cause failure based on queue theoretic 
approach. The provision of k- types of warm spares has been 
included by keeping in mind the pragmatic economical and 
physical constraints so that the machining system can work 
efficiently and smoothly. The concepts of common cause 
failure and reneging incorporated in our model fit in real time 
frame. Multiple vacations for repairmen considered have a 
significant role in reducing the cost involved as vacationing 
repairmen can do some ancillary work during vacation period. 
Various measures, which play a vital role in deciding the 
performance of the system, have been established. Numerical 
experiment performed may be helpful to explore the effects of 
parameters on performance measures. The model developed 
may be applied by the production managers, system engineers, 
management personal etc. in industrial organizations, who 
face difficulty in the maintenance of the system while making 
decision regarding the installation of the number of machines 
and the repairmen to continue the operation.  

 
 
 
 
 

  E(O) E(S) E(B) E(V) 

 
 

0.2 
 
 

0.1 9.75 4.94 1.54 2.45 
0.3 9.49 3.98 1.84 2.15 
0.5 9.40 3.29 1.99 2.00 
0.7 9.25 2.90 2.04 1.95 
0.9 9.23 2.82 2.12 1.87 

 
 

0.3 
 
 

0.1 9.91 5.01 1.59 2.40 
0.3 9.69 3.77 1.86 2.13 
0.5 9.65 3.18 2.01 1.98 
0.7 9.63 2.75 2.09 1.90 
0.9 9.62 2.60 2.12 1.87 

 
 

0.4 
 
 

0.1 9.99 5.30 1.80 2.19 
0.3 9.82 3.40 1.90 2.09 
0.5 9.79 2.88 2.07 1.92 
0.7 9.78 2.54 2.10 1.89 
0.9 9.78 2.33 2.18 1.81 

 
 

Table I: Performance measures by varying  and  

 
 
 
 
 

 
 
 
 
 

  E(O) E(S) E(B) E(V) 

 
 

0.2 
 
 

1 9.45 2.68 2.50 1.49 
2 9.56 2.76 2.33 1.66 
3 9.72 3.01 2.16 1.83 
4 9.74 3.29 1.85 2.14 
5 9.82 3.34 0.06 3.93 

 
 

0.3 
 
 

1 9.80 2.70 2.37 1.62 
2 9.84 3.14 2.31 1.68 
3 9.85 3.52 2.13 1.86 
4 9.86 3.77 1.45 2.54 
5 9.89 3.86 0.03 3.96 

 
 

0.4 
 
 

1 9.85 2.71 2.33 1.66 
2 9.91 3.34 2.27 1.72 
3 9.93 3.65 2.07 1.92 
4 9.94 4.10 1.23 2.76 
5 9.94 4.16 0.02 3.97 

 
 

Table II: Performance measures by varying and  

                                                                                                     

 
(a) 
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(b) 
 

 
(c) 

 
    Fig. 1: E(N) vs  for varying (a) b) (c) 

 
 
 
 
 

 
(a) 

 
 

 
 

 
(b) 

 

 
(c) 

 
Fig. 2: M.A. vs  for varying (a) b) (c) 
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