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Abstract—The present study considers an elastic-plastic 
contact analysis during loading-unloading of a deformable 
sphere with a rigid flat using finite element method. The 
effect of strain hardening on the contact behavior of a non-
adhesive frictionless elastic-plastic contact is analyzed 
using commercial finite element software ANSYS. To study 
the strain hardening effect different values of tangent 
modulus are considered by varying the hardening 
parameter. The range of hardening parameter is chosen in 
such a way that most of the practical materials belong in 
this range. The effect of strain hardening is explained 
through the results of simulations and compared with 
elastic perfectly plastic models as well as available loading-
unloading models. Analysis has been carried out for 
deformations up to 200 times the critical interference. It is 
found that the contact parameters during loading-
unloading are not of uniform nature within the range of 
hardening parameters used in this study. Increased strain 
hardening results in less residual strain and offer less 
resistance to full recovery of the original spherical shape. 
Multiple loading-unloading is also done for two extreme 
cases of hardening parameters to study the fluctuation of 
dimensionless interference during subsequent cycles. The 
contact parameters are found identical with first cycle of 
loading-unloading. 

I. INTRODUCTION 

Strain hardening is an increase in the strength and 
hardness of the metal due to a mechanical deformation 
in the metal's microstructure. This is caused by the cold 
working of the metal. This cold working includes shot-
peening, rolling, metal forming and various 
manufacturing processes. During those processes, 
loading-unloading is necessary. Due to different extent 
of strain hardening caused by various processes, the 
interfacial parameters like contact load, contact area, and 
residual interference after unloading are different for 
tribological pairs. Finite element method (FEM) 
simulations are now used to achieve a deeper 
understanding of these contact parameters. However, 
application of FEM technique to quantify the effect of 
material properties on these contact parameters during 
loading-unloading is very limited. 

Kogut and Etsion [1] (KE Model) first provided an 
accurate result of elasto-plastic contact of a hemisphere 
and a rigid flat during loading using finite element 
method. Jackson and Green [2] (JG Model) extended the 
KE model to account for the geometry and used five 
different yield strengths (Y) for their study. Quicksall et 
al. [3] used finite element technique to model the elastic-
plastic deformation of a hemisphere in contact with a 
rigid flat for various materials such as aluminum, bronze, 
copper, titanium and malleable cast iron. Brizmer et al. 
[4] have done elastic-plastic contact analysis between a 
sphere and rigid flat under perfect slip and full stick 
conditions for a wide range of material properties using 
FEM. Sahoo and Chatterjee [5] analyzed the elastic-
plastic loading behavior of a sphere against a rigid flat 
under varying modulus of elasticity. They observed that 
the materials with Young’s modulus to yield strength 
ratio (E/Y) less than 300 have more variation in contact 
load as well as in contact pressure than that of the 
materials with E/Y ratio more than 300 for the same 
non-dimensionless interference ratio within the elastic-
plastic range. Shankar and Mayuram [6] studied the 
elastic-plastic transition behavior in a hemisphere in 
contact with a rigid flat accounting for the effect of 
realistic material behavior in terms of the varying yield 
strengths and the isotropic strain hardening behavior. 
However, a detailed study of the effect of strain 
hardening was not done. Sahoo et al. [7] studied the 
effect of strain hardening for elastic-plastic contact and 
inferred that with the increase in strain hardening the 
resistance to deformation of a material is increased and 
the material becomes capable of carrying higher amount 
of load in a smaller contact area. 

For unloading, Johnson [8] offered one of the first 
simple analytical models of unloading of an elastic-
plastic spherical indentation contact. Mesarovic and 
Johnson [9] examined the process of unloading of two 
elastic-plastic spheres following very large indentation. 
They assumed that during unloading the deformation is 
predominantly elastic. So the loading process was 
solved numerically while the unloading solution was 
considered analytically. Ye and Komvopoulos [10] 
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modeled the inverse case of a loading-unloading of a 
rigid sphere against a elastic-plastic layered media. Li et 
al. [11] presented a theoretical load-unload model. 
Etsion et al. [12] performed unloading of an elastic-
plastic loaded spherical contact. They provided a model 
of universal nature, which was independent of the 
physical and geometrical properties of the sphere. But 
they did not consider the effect of high yield strength 
that renders low E/Y ratio and strain hardening. Jackson 
et al. [13] studied the residual stress and deformation in 
elastoplastic hemispherical contact with a rigid flat. 
They also analyzed the effect of material properties on 
the surface displacement for aluminum and steel spheres. 
They inferred that the deformation of the aluminum and 
steel hemispheres followed the same trend; however the 
values of the normalized displacements were 
quantitatively quite different. Kadin et al. [14] presented 
a multiple loading - unloading of an elastic-plastic 
spherical contact to cover a wide range of loading 
conditions far beyond the elastic limit. Kadin et al. [15] 
presented unloading of an elastic-plastic contact of 
rough surfaces. Ovcharenko et al. [16] performed 
experimental investigation to calculate the real contact 
area between a sphere and a flat during loading-
unloading and cyclic loading-unloading in the elastic-
plastic regime. Du et al. [17] studied the effect of 
adhesion and plasticity during loading-unloading of a 
deformable sphere with a rigid flat. Malayalamurthi and 
Marappan [18] studied the effect of material properties 
on the residual strains in a sphere after unloading from 
the elastic-plastic state. It is found that the effects of 
common material properties on contact parameters are 
available in the literature. On the other hand, the effect 
of material properties like strain hardening during 
loading-unloading is still missing in the literature. The 
present work is therefore an attempt to quantify the 
effect of strain hardening on residual interference and 
load-area behavior during unloading. 

II. FINITE ELEMENT FORMULATION 

The contact of a deformable hemisphere and a rigid 
flat is shown in Fig. 1 where the dashed and solid lines 
represent the situation before and after contact 

respectively of the sphere of radius R. The figure also 
shows the interference (ω) and contact radius (a) 
corresponding to a contact load (P). The contact of 
deformable sphere with a rigid flat is modeled using 
finite element software ANSYS 11.0. Due to the 
advantage of simulation of axi-symmetric problems the 
model is reduced to a quarter circle with a straight line at 
its top. 

 
Fig.1. A deformable sphere pressed by a rigid flat 

The quarter circle is divided into two different zone, 
e.g., zone I and zone II. Here zone I is within 0.1R 
distance from the sphere tip and zone II is the remaining 
region of the circle outside zone I. these two zones are 
significant according to their mesh density. The mesh 
density of zone I is high enough for the accurate 
calculation of the contact area of the sphere under 
deformation. Zone II has a coarser mesh as this zone is 
far away from the contact zone. The meshed model is 
shown in Fig. 2. The resulting mesh consists of 12986 
no of PLANE82 and 112 no of CONTA172 elements. 
Here the arc of the circle represents the deformable 
contact surface and the straight line is the rigid flat. 
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Fig.2. Meshed model of the hemispherical contact 

 
The nodes lying on the axis of symmetry of the 

hemisphere are restricted to move in the radial direction. 
Also the nodes in the bottom of the hemisphere are 
restricted in the in the axial direction due to symmetry. 
The sphere size is used for this analysis is R = 0.01 m. 
The material properties used here are Young’s Modulus 
( E ) = 70 GPa, Poission’s Ratio ( ) = 0.3 and Yeild 
stress ( y ) = 100 MPa. Here a frictionless rigid-

deformable contact analysis is performed. In this 
analysis a bilinear material property, as shown in Fig. 3, 
is provided for the deformable hemisphere. To study the 
strain hardening effect we have taken different values of 
tangent modulus ( tE ). The Tangent Modulus ( tE ) is 

varied according to a parameter which is known as 

Hardening parameter and defined as, 
t

t

EE

E
H


 . The 

value of H is taken in the range 5.00  H as most of 
the practical materials falls in this range. The value of 
H equals to zero indicates elastic perfectly plastic 
material ( tE ) behavior which is an idealized material 

behavior. The hardening parameters used for this 
analysis and their corresponding values are shown in 
Table 1.  

 
Fig.3. Stress-strain diagram for a material having bilinear isotropic 

properties 
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TABLE 1 

DIFFERENT H AND ET VALUES USED FOR THE STUDY OF STRAIN 

HARDENING EFFECT 

H Et in %E Et (GPa) 

0 0.0 0.0 

0.1 9.0 6.3 

0.2 16.7 11.7 

0.3 23.0 16.1 

0.4 28.6 20.0 

0.5 33.0 23.1 

 
The wide range of values of tangent modulus is taken 

to make a fair idea of the effect of strain hardening 
effect in single asperity contact analysis. The solution 
type is chosen as large deformation static analysis. Here 
we have applied displacement on the target surface and 
the force on the hemisphere is found from the reaction 
solution. As this is an axi-symmetric analysis the force 
is calculated on a full scale basis. The radius of contact 
area is found from the last activated node for a particular 
analysis. In our analysis we have validated our mesh 
configuration by iteratively increasing the mesh density. 
The mesh density is increased by 1% until the contact 
force and contact area is differed by less than 1% 
between the iterations. In addition to the mesh 
convergence the model also compared with the Hertz 
elastic solution. The results of contact load are differed 
by maximum 3% and contact radius by not more than 
5% below the critical interference. 

The solution consists of two stages. In the first one 
we have applied a displacement on the rigid flat by a 
dimensionless interference *= / c. During this stage 
the interference  is gradually increased up to a desired 
maximum value, max, and the contact load, the real 
contact area reach their maximum value P max, A max  

respectively. The second stage consists of the unloading 
process, where the interference, , is gradually reduced. 
When the unloading process is completed, the contact 
load, real contact areas fall to zero. However, the 
original un-deformed spherical geometry is not fully 
recovered. The deformed shape may be characterized by 
a residual interference ( res) as shown in Fig. 4. 

 

 

Fig.4 Three different profiles of the sphere 

III. RESULTS AND DISCUSSION  

As discussed earlier the strain hardening effect is 
studied by varying the hardening parameter which in 
turn changes the value of tangent modulus while other 
material properties are kept constant. The model is 
validated by comparing the results for elastic perfectly 
plastic material condition, i.e. for 0H , with the 
results of KE model [1]. The results are normalized 
according to the following normalization scheme. 
Interference () is normalized by the critical 
interference (c), provided by Chang et al. [19]. The 
critical interference is defined as, 

R
E

KS
c

2

*2








  

Where, K is the hardness coefficient 
[ 41.0454.0 K ], S is the hardness of the material,  
according to Tabor [20] S  is related to yield strength 

by yS 8.2 and *E is the equivalent young’s 

Modulus, )1/( 2*  EE in this case [ E  is the young 

modulus and   is the Poisson’s ratio of the deformable 
body]. The contact load (P) is normalized by the critical 
contact load (Pc), i.e., load corresponding to critical 
interference and Pc is written as, 

  2/32/1*

3

4
cc REP   

The contact area (A) is normalized by the critical 
contact area (Ac), i.e., area corresponding to critical 
interference and Ac is written as, 

  cc RA   

The dimensionless parameters are as follows: 
*=/c, P*=P/Pc, A*=A/Ac. The results for elastic 
perfectly plastic material behavior are compared with 
the results of Kogut and Etsion [1]. The calculated 
contact areas are exactly matched in the elastic and 
certain portion of the elastic plastic region and we found 
a maximum of 1% difference with the results KE model. 
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In case of load vs. displacement we found there is a 
maximum of 3% difference with the results of KE model. 
It may be noted here that Kogut and Etsion have done 
this analysis for a large no of sphere radius in the range 
of 101.0  R (mm) as well as for a large no of material 
properties in the range 1000)/(100  yE   and they 

have also found differences in their results up to 3%. 
Fig 5(a) to 5(d) present the dimensionless elastic-

plastic load displacement results for the loading-
unloading process in terms of P* vs. *. It shows that 
with the increase in tangent modulus value the contact 
load increases at a particular interference value. The 
numerical results of the unloading 

 

 
5(a) 

 
5(b) 

 
5(c) 

 
5(d) 

Fig.5. Dimensionless contact load –unload from different 
dimensionless interferences (a) max= 50 (b) max= 100 (c) max= 150 

(d) max = 200 

process initiated from four representative max
* (max/c) 

values of 50, 100, 150, 200 respectively are shown. 
When the unloading process is completed the contact 
load falls to zero at certain non dimensional interference 
*

res (res/ c). It is clear from the figures that this *
res 

increases with the decrease of strain hardening (tangent 
modulus.) irrespective of maximum loading *

max; from 
which unloading started. Though difference of *

res with 
the variation of strain hardening increases with the 
increase in *

max. 
Fig. 6(a) to 6(d) represent the dimensionless contact 

area displacement results for the loading-unloading 
process in terms of A* vs. *. The plot shows a non-
linear behavior between the contact area and 
interference as the results are in the elasto-plastic and 
fully plastic region. With the increase in tangent 
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modulus value the contact area decreases at a particular 
interference value. The numerical results of the 
unloading process initiated from four representative 
max* values of 50, 100, 150, 200 respectively are 
shown. The contact area increases just in the vicinity 
from where unloading starts. This is due to the fact that 
when plastically deformed hemisphere is unloaded, the 
elastic material attempts to restore its original shape. 

 
6(a) 

 
6(b) 

 
6(c) 

 
6(d) 

Fig.6. Dimensionless contact area vs. interference unloaded from 
different dimensionless interferences (a)max=50 (b) max=100 (c) 

max= 150 (d) max =200 

 
 
Fig.7 is the plot of percentage difference in 

dimensionless residual interference with that of elastic 
perfectly plastic model. From the fig., the variation of 
hardening parameters shows that for a small hardening 
parameter 1.0H (Et=0.09E) the dimensionless 
residual interference (*res) is about 11% lower than that 
of elastic perfectly plastic material. While for the large 
hardening parameter 5.0H (Et=0.33E), the *res is 
about 39% lower. It is clear from the fig that when 
tangent modulus is 2% of E, as used by Etsion et al. [12] 
the percentage variation of *res is negligible and the 
results are quite close to that of elastic perfectly plastic 
material. Thus the present finite element results indicate 
that higher hardening offer less resistance to full 
recovery of the original spherical shape. 
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Fig.7 Percentage difference in dimensionless residual interference 

(*res) with elastic perfectly plastic model 

Fig. 8(a) to 8(d) present the dimensionless contact 
area, A* vs. dimensionless contact load, P* during 
loading and unloading. The numerical results of the 
unloading process initiated from four representative 
max* values of 50, 100, 150, 200 respectively are 
shown. Here it is observed that the contact area decrease 
at a particular load for a material having higher tangent 
modulus value than that of a material having lower one. 
During unloading, it is clear from the plots that for a 
given contact load, the real contact area is larger than the 
contact area during loading. The differences in real 
contact area between loading and unloading are larger 
for higher maximum loading interference, *

max. The 
average contact pressure during unloading is smaller 
than that of during loading. To support a given contact 
load with smaller average contact pressure it requires 
larger real contact area as indicated in Fig. 8(a) to 8(d). 

 

 
8(a) 

 
8(b) 

 
8(c) 

 
8(d) 

Fig.8 Dimensionless contact area vs. dimensionless contact load, 
unloaded from different dimensionless interference (a)max=50 (b) 

max=100 (c) max= 150 (d) max =200 
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Fig. 9(a) shows the multiple loading unloading plot of 
P* vs. * up to *max=200 (P*=1025), for elastic 
perfectly plastic material. Here the dimensionless 
contact load obtained after the second loading is same 
that of after first loading.  The first unloading and 
second loading path is also same. Kadin et al. [14] 
observed different first unloading and second loading 
path when loaded up to P*=450 to study the 
dimensionless equivalent stress. Fig 9(b) is another 
multiple loading-unloading plot of P* Vs * for the 
large hardening parameter 5.0H (Et=0.33E). Here 
also the observation is identical with that of Fig 9(a). 

 

 
9(a) 

 
9(b) 

Fig.9. Dimensionless contact load vs. dimensionless interference 
during the process of multiple loading for two different tangent 

modulus; loaded up to *max=200 

 
Fig. 10 presents the value of *

res (res / max) as a 
function of *

max. Etsion et al. [12] used 2% strain 
hardening. The plot of “Etsion 2005” in Fig. 10 presents 
the empirical relation provided by Etsion et al. [12]. Our 

results correlate well with the findings of Etsion et al. 
They defined the dimensionless residual interference 
(*

res = res/max) as an “elastic-plastic loading (EPL) 
index”. From this graph it can be observed that the EPL 
index increases with the decrease of tangent modulus 
(strain hardening). So higher Hardening results in lower 
residual strain. 

 

 
Fig.10. Dimensionless residual interference vs. dimensionless 

maximum interference 

IV. CONCLUSIONS  

The loading-unloading of a deformable sphere loaded 
by a rigid flat is analysed for a wide range of strain 
hardening. The result for different tangent modulus 
clearly shows that a generalized solution cannot be 
applicable for all kind of material. It is observed that 
higher tangent modulus (strain hardening) results lower 
residual interference when unloaded from a particular 
dimensionless interference; which in turn offers less 
resistance to full recovery of the original shape. The 
elastic-plastic loading index (EPL index), which may 
serve as a measure of the level of plasticity of loaded 
sphere is also increasing with the decrease in hardening 
parameter. It is also observed that for same real contact 
area the load carrying capacity also increases with the 
increase in strain hardening during loading-unloading. 
The main conclusion of the present work is that the 
parameter strain hardening should be taken care of 
appropriately to get the accurate prediction of contact 
behaviour during loading-unloading. 
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