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Abstract—The distributed systems in which nodes and/or 
edges may fail with certain probabilities have been modelled by a 
probabilistic network or a graph G. Computing the residual 
connectedness reliability (RCR), denoted by R(G), of 
probabilistic networks under the fault model with both node and 
edge faults is very useful, but is an NP-hard problem. Since it 
may need exponential time of the network size to compute the 
exact value of R(G), it is important to calculate its tight 
approximate value. In this paper, we present a new approach 
with an efficient algorithm for evaluating the upper bound of 
R(G) of distributed systems with unreliable nodes and edges. We 
also apply our algorithm to some typical classes of networks to 
evaluate the upper bounds and show the effectiveness and the 
efficiency of the new algorithm. Numerical results are presented. 
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I. INTRODUCTION 

The behaviour of a distributed system can be modelled by a 
probabilistic network or a graph G whose nodes and/or edges 
may fail [1]. The ability of the communication between the 
residual (remaining working) nodes is measured by the RCR 
R(G), which is the probability that the residual nodes can 
communicate with each other [2][4]. 

Generally, there are three kinds of fault models in a 
probabilistic network [1]: 

- Node fault model: The edges of a graph are perfectly 
reliable, but the nodes fail independently with 
probability  01 p . 

- Edge fault model: The nodes of a graph are perfectly 
reliable, but the edges fail independently with 
probability  11 p . 

- Node-and-edge fault model: Nodes and edges fail 
independently of each other, with node and edge failure 
probabilities equal to  01 p  and  11 p , respectively. 

For all these three fault models, it has been shown that the 
analysis problems are all NP-hard [1], [4][6]; that is, there 
exists no efficient algorithms for computing R(G). 

There are quite a number of papers dealing with 
approximation algorithms for estimating R(G) under the edge 
fault model and the node fault model. To our best knowledge, 
little work has been done under the fault model with both 

node and edge faults. Frank and Gaul [2] proposed the bounds 
to R(G) for the complete graph. Ball [1] has shown that the 
point estimate reliability problem is also NP-hard. Chen and 
He [7] studied the reliability bounds for arbitrary graphs under 
the node-and-edge fault model. They found good upper bound 
and lower bound expressions, and efficient algorithms for 
bounding the reliability R(G). They also demonstrated that the 
difference between the upper bound and lower bound 
gradually tends to zero for large networks, and are very close 
to zero for small networks. Shpungin [8] suggested a Monte 
Carlo scheme for evaluating reliability for the networks with 
unreliable nodes and unreliable edges, for the case of k-
terminal connectivity criterion. But for the case of residual 
connectedness reliability, his scheme evaluates the reliability 
of the networks with unreliable nodes and with reliable edges. 

In this paper, we present a new approach with an efficient 
algorithm for evaluating the upper bound of R(G) of 
distributed systems under the node-and-edge fault model. To 
show the effectiveness and the efficiency of the new upper 
bound, we apply the new algorithm to some typical classes of 
graphs. Numerical results are also derived. 

II. NOTATIONS AND ACRONYMS 

RCR  Residual Connectedness Reliability 
UB  Upper Bound 
NEF  Node-and-Edge Fault 
G  undirected graph 
R(G)  residual connectedness reliability 
n  number of nodes in G 
p0  node operational probability 
p1  edge operational probability 

( )R G   upper bound of R(G) 

III. METHOD 

Our approach to obtain a tight UB with efficient running 
time is directly based on the original definition of the RCR: 

R(G) = Pr{the subgraph induced by the surviving 
                                 nodes and edges of G is connected},     (1) 
where Pr{A} stands for the probability of random event A. 

Based on the relationship and the operation of the random 
events, a method for estimating reliability UB is presented. 

ISSN : 0975-4024 107



Mohamed H. S. Mohamed et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 107-110 
 

Without loss of generality, we assume that graph G is 
initially connected, and its vertex set is V = {v1, …, vn}. An 
edge is represented by two vertices. 

Let E denote the random event that the surviving nodes and 
edges induced in the subgraph are connected. Then we have 

     Pr 1 Pr  R G E E .                       (2) 

Let  iE v  be the event that iv is isolated in the induced 

graph, 1,...,i n . Then the occurrence of any  1E v , 

 2E v , …,  nE v  implies that E does not occur. 

Consequently we have 

 
1


n

i
i

E E v .                                  (3) 

It is obvious that  iE v  occurs if and only if iv  does not 

fail, and for each neighbour node w of iv , either w or edge iwv  

fails. The probability that such an event occurs is 

      
0 1 0Pr 1  id v

iE v p p p , 1,...,i n      (4) 

where d(vi) is the degree of vi. 
Then the UB of R(G) is given in Theorem 1. 
Theorem 1: Let r S , S V , and  1 2S S S  , where 

any two nodes of S have not any common neighbour node in 
G, and the nodes of any pair of adjacent nodes in S have the 
same degree in G. Let S2 be the set of all pairs of adjacent 

nodes in S, where   2 2, : 1,...,k kS y z k r  and 2r is the 

number of these pairs. Let 1 2S S S  , where 

 1 1: 1,...,jS x j r  and 1 22r r r  . Then the UB of R(G) is 
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where 0p , 1p are the node and edge operational 

probabilities, respectively. 

Proof: Let  jF x be the event that node jx is isolated in the 

remaining subgraph of G, 11,...,j r . Then 

      
0 1 0Pr 1 jd x

jF x p p p  .                  (6) 

Let  kF y be the event that node ky is isolated in the 

remaining subgraph of G, 21,...,k r . Then  

      
0 1 0Pr 1 kd y

kF y p p p  .                  (7) 

Let  kF z be the event that node kz is isolated in the 

remaining subgraph of G, 21,...,k r . Then  

      
0 1 0Pr 1 kd z

kF z p p p  .                  (8) 

From the definitions of S, S1 and S2 in Theorem 1, we have 
the following results: 

- The distance between any two nodes in S is either one 
or at least three. 

- The distance between any node in S1 and any other node 
in S is at least three. 

- The distance between any two different pairs of 
adjacent nodes in S2 is at least three. 

Therefore, it is obvious that 
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Consequently 
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Hence, since 

        
1 2

1 1 1

r rn

i j k k
i j k

E E v F x F y F z
  

    
          

    ,  (13) 

we then get 

        
21

1 1
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and 

        
21

1 1

1 Pr
rr

j k k
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R G F x F y F z
 

          
    

   .  (15) 

Thus we have proved the Theorem 1; that is 
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IV. ALGORITHM FOR THE UPPER BOUND 

Based on the constructive method for estimating the UB 
above, we can obtain an algorithm which estimates the 
reliability UB of RCR R(G). According to Theorem 1, the 
bigger the set S, the better the UB is. Thus, in order to obtain a 
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tighter UB, we must find the set S with as many nodes as 
possible. 

A. Preparation 

Before we derive the algorithm, we need the following 
procedure to find the set S. 
Procedure set S(G) 
Input: graph G 
Output: a set S of graph G 
  1    H V , 1S  , 2S  , 0j  , 0k   

  2    while H    
  3           do u  the node of H with the min degree in G 
  4               0adj   

  5                for every neighbour node v in G of node u 
  6                      do if 0adj   

  7                               then if v and u have the same degree in 
                                               G, and do not have any common    
                                               neighbour node in G 
  8                                           then 1k k  , ky u , kz v  

  9                                                    2 2 ,k kS S y z   

10                                                   1adj   

11                                                    remove u and v and their 
                                                        neighbours and neighbours     
                                                        of the neighbours from H 
12                if 0adj   

13                    then 1j j  , jx u  

14                              1 1 jS S x   

15                              remove u and its neighbours and neigh- 
                                  bours of the neighbours from H 
16       1 2S S S   

17    return S 

Now we are in the position to give the UB ( )R G of R(G). 

B. Algorithm 

The following algorithm finds the UB ( )R G of R(G). 

Algorithm UpperBound 
Input: G, S, 0p , 1p  

Output:  R G  /*  R G according to Theorem 1*/ 

1      1R G   

2    for 1j  to 1j r  

3          do         0 1 01 1 jd x
R G R G p p p     

4    for 1k  to 2k r  

5          do         0 1 01 1    kd y
R G R G p p p  

                                       1

0 1 0 0 1 01 1 1
   k kd z d y

p p p p p p  

6    return  R G  

V. THE COMPLEXITY OF THE ALGORITHM 

The main computational process for computing the UB is to 
find the set S in the procedure set S(G). This procedure can be 
done in time O(n2), while the calculation of the bound value, 
taken directly from the Theorem 1, can be done in time O(n). 
Thus the time complexity for the UB is O(n2). 

VI. EXAMPLE 

To demonstrate the method and the algorithm above, the 
sample network illustrated by Fig. 1 is considered. 

 

 
 

Fig. 1.  Sample network 

 
Applying our method and algorithm to sample network in 

Fig. 1, we get the following results: 

 1 1 2,S v v ,     2 13 14 7 8, , ,S v v v v , 

    1 2 13 14 7 8, , , , ,S v v v v v v ; 

    1 0 1 0Pr 1F v p p p  ,     2 0 1 0Pr 1F v p p p  , 

    2

13 0 1 0Pr 1 F v p p p ,     2

14 0 1 0Pr 1 F v p p p , 

    3

7 0 1 0Pr 1 F v p p p ,     3

8 0 1 0Pr 1 F v p p p . 

       2

1 2 0 1 0Pr 1 1 1F v F v p p p    , 
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VII. NUMERICAL RESULTS AND DISCUSSIONS 

To show the effectiveness and the efficiency of the new UB, 
we apply our algorithm to some typical classes of graphs such 
as circle graph, hypercube, and Harary graph, simply because 
these structures allow simpler routing algorithms, higher fault-
tolerance ability and reliability. For example, in a p-dimension 
hypercube, or p-hypercube for short, denoted by pQ , a large 

number of computing nodes ( 2 p nodes) are connected using a 
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smaller number of communication edges ( p edges per node, 
instead of 2 1p  edges per node as required by a complete 
graph) while keeping a minimal communication delay 
between the nodes. The hypercube has a symmetric and 
regular topology, which is very easy to understand and utilize. 

To computationally examine the effectiveness of the new 
UB, three sets of graphs were used (see Tables IIII). When 
compared to the UB by Chen and He in [7], in each instance 
the new UB of this paper was tighter. 

 

TABLE I 
COMPARISONS OF UB VALUES FOR CIRCLE GRAPH nC  

n  
0q  q1  UB by [7] New UB 

64 0.9 0.95 0.669529 0.582604 
64 0.95 0.9 0.654624 0.566327 
64 0.99 0.99 0.991799 0.988417 
256 0.99 0.995 0.981366 0.9727 
256 0.995 0.99 0.981273 0.972565 
256 0.999 0.999 0.999661 0.999498 
1024 0.999 0.9995 0.999234 0.998856 
1024 0.9995 0.999 0.999234 0.998855 
1024 0.9999 0.9999 0.999986 0.99998 

 

TABLE II 
COMPARISONS OF UB VALUES FOR HYPERCUBE pQ WITH  4p   

0q  q1  UB by [7] New UB 

0.9 0.95 0.999602 0.996825 
0.95 0.9 0.99958 0.996649 
0.95 0.95 0.999914 0.999314 

 

TABLE III 
COMPARISONS OF UB VALUES FOR HARARY GRAPH ,k nH WITH 

k = 3 AND n = 18  

0q  q1  UB by [7] New UB 

0.9 0.95 0.99452 0.967826 
0.95 0.9 0.994216 0.966082 
0.95 0.95 0.99824 0.989528 

 
As a result, the new UB is tighter than the UB by Chen and 

He in [7], as shown in Tables IIII, and is also calculated in 
time O(n2). The new algorithm can easily be implemented for 
evaluating reliability UB of distributed systems with 
unreliable nodes and edges, and produces a good 
approximation for RCR that can be used in general study in 
graphs and computer networks 

VIII. CONCLUSIONS 

In this paper, we presented a new method and efficient 
algorithm for evaluating reliability upper bound of distributed 
systems with unreliable nodes and edges. To numerically 
show the efficiency and the effectiveness of our algorithm, we 
have applied it to some typical classes of graphs. The new 
algorithm produces a good approximation for RCR that can be 
used in general study in graphs and computer networks. 
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