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Abstract- In this work, it has been attempted to 

analytically treat the nonlinear behavior of 

structures. Since analysing nonlinear problems is of 

great difficulty, different numerical methods and 

software are advised to treat such problems. Despite 

the increasing expenses of building structures to 

maintain their linear behavior, nonlinearity has been 

inevitable, and therefore, nonlinear analysis has been 

of great importance to the scientists in the field. As 

structures confront lateral forces and intense 

earthquakes especially near fault regions, a part of 

the structure remains linear, but some part of it 

behaves nonlinearly for example dampers, columns 

and beams. This is simulated by a damped in 

nonlinear oscillator. In this paper, the nonlinear 

equation of oscillator with damping which has 

nonlinear behavior is representative of the dynamic 

behavior of a structure has been solved analytically. 

In the end, the obtained results are compared with 

numerical ones and shown in graphs and in tables; 

analytical solutions are in good agreement with those 

of the numerical method. 

Keywords: Nonlinear Oscillator Equation; nonlinear 

Damping; Nonlinearly Dynamic Structure 

1. Introduction 

Until recently, different numerical methods have been 

implemented to solve the problem of a nonlinear 

oscillator (which represents the nonlinear behavior of a 

structure under dynamics loads). But in this project, it 

has been attempted to propose an analytic solution for 

such problem, which is much simpler for engineers to 

interpret and to use in their designs. This is because an 

equation is obtained rather than only some data. 

In the dynamic model of this problem, the earthquake 

force has been modelled with a harmonic force and the 

columns with nonlinear behavior are modelled with the 

spring 2k  and the columns with linear behavior are 

modelled with the spring 1k . The coefficient 1 2,   

represents the nonlinear behavior of damping which 

roots in the joints, the material and other parameters [1-

5].To fully demonstrate the problem, let us consider a 

structure whose columns are under the harmonic load 

(e.g. earthquake). This load results in a nonlinear 

behavior in a part of the structure, while another part 

still behaves linearly. The important point is the analysis 

of such system to obtain the displacement equation, 

which is extremely useful to study the structure. 
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(b) 

Figure 1. (a) Schematic view of a structure under harmonic load. 

(b) The dynamic model of a structure under harmonic load

 

The analytical method which is used in this article is 

Homotopy Perturbation method (HPM) [6-16]. This 

method has been implemented to many engineering 

problems by many other scientists in different fields [17-

29]. This method is capable of solving highly nonlinear 

problems while the constant coefficients are 

parametrically inserted into the equation. Therefore, the  

obtained results can be graphically shown and analysed 

 for different cases,  and by inserting different values for 

these parameters regarding each single case of study. 

In the end, a comparative study is conducted to verify 

the accuracy of the analytical method as compared with 

the numerical solution. This is also shown in graphs and 

tables.  

 

2. Dynamic and mathematical model of the 

problem [30-34] 

The general equation of an oscillator with a nonlinear 

spring, a linear spring and a nonlinear damper under a 

harmonic load is as follows [34]: 

2 3
1 2 1 2 0( ) cos( )mx x x k x k x F t         (2.1) 

 

Subject to the following initial conditions: 

(0) , (0) 0x A x   (2.2)

Where  m  is the mass, 1 and 2  are damping 

coefficients, 1k  is a linear stiffness coefficient, and 2k is 

a nonlinear stiffness coefficient. The harmonic 

excitation force is characterized by the force 

amplitude, 0F  with excitation frequency of  . A is the 

initial amplitude of displacement.   

As in [31],  can be found easily by doing the same 

procedure and  having the parameters, A , m , 1 , 2 , 

1,k 2k  and 0F . 

Figure 2 shows how the stiffness coefficients of 

nonlinear and linear springs behave, where ( )f x  is the 

spring force and x is the displacement: 

In the following section the basic concepts of the 

analytical and numerical methods are discussed and later 

applied to the nonlinear equation, above. 
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(b) 

Figure 2. (a) Hard spring stiffness nonlinear behavior. 

(b) Soft spring stiffness nonlinear behavior. 

 

3. The basic concept of the solutions 

In this section, the basic of the utilized methods are 

explained for the better understanding of the reader. 

 

3.1. HPM 

To illustrate the basic ideas of this method, we consider 

the following equation: 

    0A x f r     r  (3.1)

with the boundary condition of: 

, 0
x

B x
t

    
   r  (3.2)

Where A  is a general differential operator, B  a 

boundary operator,  ( )f r  a known analytical function 

and  is the boundary of the domain  . A can be 

divided into two parts of L  and N , where L is linear 

and N is nonlinear. Eq. (3.1) can therefore be rewritten 

as follows: 

      0L x N x f r      r  (3.3)

Homotopy perturbation structure is shown as follows: 

       
   

0, 1

0

H p p L L x

p A f r

 



    
    

 (3.4)

Where, 

    Rpr  1,0:,  (3.5)

In Eq. (3.4),  1,0p  is an embedding parameter and 

0x  is the first approximation that satisfies the boundary 

condition. We can assume that the solution of Eq. (3.1) 

can be written as a power series in p , as following: 





n

i

i
i ppp

0
2

2
10    (3.6)

And the best approximation for the solution is: 

1 0 1 2limpx          (3.7)

 

3.2. Runge-Kutta 

For the numerical approach to verify the analytic 

solution, the fourth RK (Runge-Kutta) method has been 

used. This iterative algorithm is written in the form of 

the following formulae for the second-order differential 

equation: 
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
     

 



 

 

(3.8) 

Where, t  is the increment of the time and 1h , 2h , 3h , 

and 4h  are determined from the following formulae: 

1

2 1

2
3 1 2

2
4 2 3

( , , ) ,

( , , ),
2 2 2

1
( , , , ),

2 2 4 2
1

( , , , ).
2

i i

i i i i

i i i i

i i i i

h f x x x k

t t t
h f t x x x h

t t t
h f t x x t h x h

h f t t x tx t h x th


  

   

  
    

    

 

 

 

 

 

(3.9) 

The numerical solution starts from the boundary at the 

initial time, where the first value of the displacement 

function and its first-order derivative are determined  

from initial condition. Then, with a small time 

increment t , the displacement function and its first- 

order derivative at the new position can be obtained  

 

using Eq. (3.8). This process continues to the end of the 

time limit. 

 

4. The Solutions 

In this section the applications of the two methods to the 

nonlinear equation of oscillator are discussed. 

 

4.1. HPM (Analytic) 

As the HPM was applied to the nonlinear equation of (2.1), we have: 

2 3
1 1 1 2 1 2 0( ) cos(1 p)(mx x k x )+p(mx x x k x k x F ( t ))=0               (4.1) 

After expanding the equation and collecting it based on the coefficients of p -terms, we have: 

0
0 1 0 1 0

1 2 3
1 1 2 0 1 1 1 2 0 0

2 2 2
2 1 2 2 0 1 2 0 1 0 1 2 2 0 1

3

: 0

: ( ) cos( ) 0

: 2 3 0

: ....

p mx x k x

p mx x x k x k x F t

P mx x x x x x x k x k x x

P



  

  

   


     
      


 

 

   
 (4.2) 

One can now try to obtain the solution of different iterations (4.2),in the form of : 

2
1 1 1

2
1 1 1

( 4 )1
2 2 2

1 1 1 1 1
0 2 2

1

( 4 )1
2 2 2

1 1 1 1 1
2

1 1

( 4 4 )1
( )

2 4

( 4 4 )1

2 4

k m t

m

k m t

m

k m k m e
x t

m

k m k m e

k m

 

 

  
 

  


  

  


   


 

   


 

 (4.3) 

The obtained iteration is used to generate the equation 

for the next iteration, and therefore the second and third 

iterations are obtained. Since the two other ones and 

therefore the general solution are too long to be written 

 in this article, we have shown them in graphs. 

 In table 1, the numerical values for x and x for 

different points of time and for 

1 21, 0.04, 7, 0.02, 3.536163732f A        . 
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Table 1. The numerical values for x and x for eleven different points of time (Analytic),  

for 
1 21, 0.04, 7, 0.02, 3.536163732f A        . 

t  x  x
0 0.04 0 
1 -0.0047900421 -0.0146147286 
2 0.0251075641 0.1111212726 
3 -0.0343846581 -0.0715226752 
4 0.0396777396  0.0187245327 
5 -0.0386351750 0.0365470429 
6 0.0316988911 -0.0862762009 
7 -0.0198832285 0.1227331312 
8 0.0050134361 -0.1403312942 
9 0.0106270740 0.1363633189 

10 -0.0246343983 -0.1114395304 
 

4.2. Runge-Kutta (Numerical) 

In this section, the Maple Package has been utilized for 

the numerical analysis of the problem, in which the  

 

 

Rkf45 is used to solve ODEs. The solution for the 

displacement and the velocity for eleven different points 

of time are shown in table 2. 

 

Table 2. The numerical values for x and x for eleven different points of time (Numerical), for 

1 21, 0.04, 7, 0.02, 3.536163732f A        . 

t x  x
0 0.04 0 
1 -0.0047905671 -0.1461467333
2 0.0251075801 0.1111212105 
3 -0.0343847766 -0.0715221141 
4 0.0396777432 0.0187237632 
5 -0.0386350967 0.0365478116 
6 0.0316987491 -0.0862767370 
7 -0.0198830505 0.1227332923 
8 0.0050132652 -0.1403312934 
9 0.0106272300 0.1363632356 

10 -0.0246345296 -0.1114393022 
 

5. Results and discussions 

In this section, the results for displacement and the 

velocity for different times are shown in tables 3 and 4, 

for different f 's and A 's, in order to evaluate the 

accuracy of the analytic solution. 

As it is obviously seen, the results of the analytic and 

numerical approaches have shown excellent 

compatibility. In order to have a better scheme of the 

problem, displacement x  is shown in figure 3 based on  

 

 

time, for ten seconds (different f 's and A 's are 

assumed). 

In the figure 4, the velocity of each position is drawn 

versus its position; therefore, the velocity of any specific 
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point x can be easily read. This can only be done using 

the analytic method; since the equation of displacement  

is readily given by this method, the first and second 

differentiations can be simply done by differentiating 

with respect to t . 

Also using figure 5, the acceleration of any specific 

point x can be easily read. As mentioned earlier, this 

can only be done using the analytic approach. 

The important point which cannot be seen on the figures 

of ( )x x  and ( )x x  is that the starting part of these 

diagrams which refers to the times betweent 's from 0  

to 1, is not drawn. The reason is that in this period of 

time, the behavior of the displacement equation has not 

yet become harmonic, and therefore, the velocity and 

acceleration is not in the rage of the above diagrams.  

 

6. Conclusions 

As structures are exposed to lateral harmonic forces and 

intense earthquakes, parts of the structure remains linear, 

but some parts of it inevitably behave nonlinearly; this is 

simulated by a nonlinear damped in nonlinear oscillator.  

In this work, HPM which is a new analytical method has 

been applied to the nonlinear equation of an oscillator  

with nonlinear damped, and the results have been 

compared with that of the numerical solution. The 

results have shown good agreement with the numerical 

ones. Having obtained the displacement equation, one is 

able to determine the velocity and acceleration 

equations. The target of the present work was to 

determine the displacement, velocity and acceleration 

equations of the structure under the specified harmonic 

load, which gives a better viewpoint for engineering 

design to scientist in the field. The obtained 

displacement equation can be used by designers to 

minimize displacements. 

The main advantage of applying HPM is that the results 

are readily obtained and a few iterations are used. The 

significant merit of the analytic approach is to provide 

scientists with the general parametric relation between 

the dependent and independent variables, namely, 

displacement and time, respectively. Therefore, the 

related equations can be simply obtained, giving one the 

opportunity for further studies, for different cases and 

thereby different parameters. 

 

 
 

(a) 

 
 

(b) 

 
Figure 3. Displacement x  based on time t  for 

(a) 1, 0.04, 3.536163732f A     and (b) 0.8, 0.05, 2.208420786 f A    . 
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(a) 

 
 

(b) 
Figure 4. Velocity x  based on displacement x  for 

 (a) 1, 0.04, 3.536163732f A     and (b) 0.8, 0.05, 2.208420786 f A    . 

 

 

 
(a) 

 
(b) 

Figure 5. Acceleration x  based on displacement x  for 

 (a) 1, 0.04, 3.536163732f A    ), (b) 0.8, 0.05, 2.208420786 f A    . 
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Table 3. A comparative table for error detection of the analytic method, for 1, 0.04, 3.536163732f A    .  

 x  x  

t  HPM RKf45 HPM RKf45 

0 0.04 0.04 0 0 
1 -0.0047900421 -0.0047900421 -0.0146147286 -0.1461467333 
2 0.0251075641 0.0251075641 0.1111212726 0.1111212105 
3 -0.0343846581 -0.0343846581 -0.0715226752 -0.0715221141 
4 0.0396777396 0.0396777396  0.0187245327 0.0187237632 
5 -0.0386351750 -0.0386351750 0.0365470429 0.0365478116 
6 0.0316988911 0.0316988911 -0.0862762009 -0.0862767370 
7 -0.0198832285 -0.0198832285 0.1227331312 0.1227332923 
8 0.00501343617 0.00501343617 -0.1403312942 -0.1403312934 
9 0.0106270740 0.0106270740 0.1363633189 0.1363632356 
10 -0.0246343983 -0.0246343983 -0.1114395304 -0.1114393022 

 

Table 4. A comparative table for error detection of the analytic method, for 0.8, 0.05, 2.208420786 f A    .  

 x  x  

t  HPM RKf45 HPM RKf45 

0 0.05 0.05 0.00 0.00 
1 0.0357889238 0.0357877175 -0.0944705259 -0.0944701811 
2 -0.0491327293 -0.0491327017 -0.0052798774 -0.0052781411 
3 0.0284987344 0.0284989920 0.0907084539 0.0907078760 
4 0.0162529086 0.0162523396 -0.1044988428 -0.1044984371 
5 -0.0476567523 -0.0476563249 0.0333790354 0.0333803038 
6 0.0405213404 0.0405215086 0.0646987668 0.0646977378 
7 -0.0005805570 -0.0005810284 -0.1104188261 -0.1104182780 
8 -0.0398289599 -0.0398283828 0.0667613105 0.0667618788 
9 0.0480002055 0.0480001785 0.0309339902 0.0309325437 
10 -0.0173189259 -0.0173193016 -0.1035906579 -0.1035901309 
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