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Abstract— Fault tolerance property of artificial neural 
networks has been investigated with reference to the 
hardware model of artificial neural networks. Weight fault 
is an important link, which causes breakup between two 
nodes. In this paper weight fault has been explained. 
Experiments have been performed for Weight-stuck-0 fault.  
Effect of weight-stuck-0 fault on trained network has been 
analyzed in this paper. The obtained results suggest that 
networks are not fault tolerant to this type of fault. 
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I.  INTRODUCTION  

An Artificial Neural Network (ANN) is an 
information-processing paradigm that is inspired by the 
biological nervous system, i.e., the human brain [2]. The 
key element of this paradigm is the novel structure of the 
information processing system. It is composed of large 
number of highly interconnected parallel processing 
elements (neurons) working together to solve specific 
problems. An ANN is configured for specific 
applications, such as pattern recognition or data 
classification, through learning process.  

Artificial neural network have the potential for 
parallel processing due to the implementation on 
Application Specific Integrated Circuit (ASIC) [4] or 
Field Programmable Gate Array (FPGA) [5][6][7].  The 
input-output function realized by neural network is 
determined by the value of its weights.  

In the case of biological neural network, tolerance to 
loss of neurons has high priority, since a graceful 
degradation of performance is very important for survival 
of the organism. Fault tolerance measures the capacity of 
neural network to perform the desired task under given 
fault condition. It also maintains their computing ability 
when a part of the network is damaged or removed. In [9], 
the study of fault tolerant properties of the neurons has 
been reported for partial fault tolerance by replication and 
training and the assertion is that Triple Modular 
Replication (TMR) leads to a fault tolerant network. This 
is a one of the popular technique in digital system. 

Fault tolerances of ANN have been studied in 
[1][18]. Fault tolerance of ANN may be 
characterized/categorized on the following aspects: 

 (i) Weight error: Weight stuck at zero 
(ii) Neuron error: Node stuck at zero 
(iii) Input pattern errors: injecting noise during 

the training phase. 
The focus of this paper is on effect of weight fault. 

Experiments have been performed on weight stuck at zero 
faults on the trained network. Detailed experimentation 
has been explained in section VI. An Architecture of 
feedforward artificial neural network (FFANN) has been 
chosen for the experimentation purpose because they are 
among the most popular types. 

Hardware model(s) for artificial neural network(s) 
has (have) been widely implemented by various 
researchers for applications like image processing and 
controller-based applications. In recent years, many 
approaches have been proposed for the implementation of 
different types of neural networks, such as multilayer 
perceptron [8], Boltzmann machine [13] and other 
hardware devices [11].  

The analysis of fault tolerance of a network normally 
requires study of weight fault, node fault and external 
faults [33]. Stuck-at model is a popular technique to study 
effect of fault on a given network [32], where a faulty 
gate delivers a constant logic one or logic zero at its 
output, or acts as if one of its inputs is stuck at a fixed 
logic value. Neural networks process analog function 
values, and thus the range of possible faults may be even 
larger. Weight stuck at zero faults has been chosen for the 
experimentation purpose, in order to make fault analysis 
manageable.  

The emphasis of the fault tolerance investigation of 
ANNs has been focused on the demonstration of non-fault 
tolerant behavior of these networks and/or the design of 
paradigm for making a network fault tolerant to specific 
faults. A complete modeling of neural faults is still 
lacking. This paper aims to present an effect of weight 
fault specifically stuck at zero faults on a trained network. 

In this paper, Section II discusses the architecture of 
FFANN. Section III discusses related work; Section IV 
discusses fault model and metrics for measurement of 
faults. Section V describes weight fault. Section VI 
discusses the experiments and the obtained results for the 
weight-stuck-0 fault while conclusion is presented in 
Section VII. 
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II. ARCHITECTURE OF FFANN 

 
The architecture of the proposed fault diagnosis 

neural network is illustrated in Figure 1. A feed forward 
artificial neural network has been chosen for the 
experiment purpose. 30 nos. of network have been trained 
for the purpose of experiment. A network has single 
hidden layer with two input nodes and one output nodes 
in the experiments conducted. Output of a neuron is:  
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 Where, xi: input vector applied to network 
              Wi: weight applied to each input  
  f (a): activation function for a hidden 

node 
 
And activation function is defined as  
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Figure 1: Schematic Architecture of FFANN with 
one hidden layer of nonlinear nodes. 

 
A hyperbolic tangent sigmoid transfer function has 

been chosen as an activation function for hidden node and 
a linear transfer function has been chosen as an activation 
function for output node. 

III. RELATED WORK 

With the widespread usage of the chip-based device 
of the ANN as controller [11], it has become imperative 
to study the behavior of these circuits under various 
faults, i.e., the study of their fault tolerance behavior must 
be undertaken. The available literature on the fault-
tolerance behavior of feedforward ANNs may be 
summarized as: 

1. Demonstration of non-fault-tolerance to specific 
faults [9] [14]. 

2. Regularization during training [15]. 

3. Enhancement of fault tolerance by design of 
algorithms for embedding fault-tolerance into the 
network, during training [16] [19]. 

4. Redesigning the network architecture (after 
training) by replication of nodes and their 
associated weights and usage of majority voting 
[3] [17]. 

Piuri [14] asserts that the network can not be 
considered to be intrinsically fault tolerant. Edwards and 
Murray [15], use the regularization effect of weight noise 
to design a fault tolerant network. Chin et. al. [19] 
demonstrate a training algorithm that uses weight value 
restriction (and addition of additional nodes), fault 
injection during training and network pruning to achieve a 
fault tolerant network, while [3] and [12] redesign the 
trained network to achieve a fault tolerant network. 
Phatak and Koren [17] devised measures to quantify the 
fault tolerance as a function of redundancy. Bolt et. al. 
[20] indicated that the network trained by 
backpropagation algorithm seldom distribute information 
to connection uniformly. Due to this information few 
connection are key components, whose failure will cause 
great loss to the networks. A method to improve the fault 
tolerance of backpropagation networks is presented in 
[30], which restrained the magnitudes of the connections 
during training process. Hammadi and Ito [16] 
demonstrate a training algorithm that reduces the 
relevance of weight. In [16], relevance of weight in each 
training epoch was estimated, and then decreases the 
magnitude of weight   

IV. FAULT MODEL AND METRICS 

Three types of fault model exist in neural networks 
system [12]. Fault models are categorized as follows: 

1) Weight faults 
2) Input faults 
3) Node faults 

 
Missing link of interconnection between two nodes is 

called weight fault. The weight and node faults are often 
modeled as stuck-at-0 and most often occur during a 
memory disappearance or a link disconnection in VLSI. 
Categorization of weight faults is explained in section 5. 

Any incorrectness in the input to the adaptive 
machine is defined as an input fault. These faults occur 
due to external disturbance or noise. Mainly these types of 
fault affect input vector of the machine.  

Node fault is a similar type of fault as weight fault. 
Node faults are categorized in two types of node faults, 
namely hidden node faults and output node faults. Three 
types of node faults happen in node faults. Node fault 
categorized as follows: 

1. Node stuck at zero 
2. Node stuck at one 
3. white noise in node 
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 In this paper we consider only weight stuck at 
zero. This fault corresponds to linkage breaking in the 
hardware, and thus is one of the most important hardware 
faults. 

To measure the effect of faults/errors on the network 
output enumerated above, the following types of 
error/fault/parameter sensitivity measures may be defined: 
MSE, MAPE and Other Global Measures: 

The mean squared error (MSE) and the mean 
absolute percentage error (MAPE) should be used to 
measure the effect of all types of faults if the output of the 
FFANN is real. The percentage of misclassification is 
suggested as a measure of fault/error, for classification 
problem 

V. WEIGHT FAULTS 

The removal of the interconnected weights in a network 
and the occurrence of stuck-at faults in neurons are of two 
types that can serve as a test bed for the robustness of 
neural networks. The robustness of a backpropagation 
trained multilayer network to remove weights to/from the 
hidden layer and the influence of redundancy in the form 
of excess hidden neurons has been investigated in [14]. 
The effect of “Stuck-at-0” and “stuck-at-1” neurons on 
the solutions found in recurrent optimization networks is 
investigated in [26].  
These are the faults/errors that affect the weights of the 
network. Following types of faults / errors are defined: 

(a) Weight stuck at zero (WSZ): This fault 
corresponds to an open fault or connection breakage 
between two nodes. 

(b) Weight stuck at maximum/minimum (WSMa/ 
WSMi): Weight stuck at a value of ±|W|max, where |W|max 
is the maximum magnitude weight in the system. A -ve 
weight will be pushed to −|W|max while a +ve weight will 
be pushed towards +|W|max and vice-versa. 

This allows us to model weight faults at substantially 
large values, which may or may not lead to node hard 
faults of the type NSZ or NSO depending on the weight 
interaction with the other weights leading to the same 
node as the faulted weight. 
(c) White noise in weights (WNW): The presence of 
white noise (zero mean gaussian with finite variance) may 
be taken as a reflection of thermal noise or circuit 
degradation. This noise is different from node output 
noise as it is not correlated in weights leading from the 
same node. 
 Due to paucity of space, we restrict our attention to 
stuck at zero fault only. 

VI. EXPERIMENTS AND RESULTS 

A small experiment was conducted to demonstrate 
the applicability of WSZ fault on a trained neural 
network. 

30 nos. of networks were trained for the following 
function approximation tasks [21] 

 
Fn1: )*sin(*exp( 21 xxy  )   ; x1,x2 uniform in [-1,1] 
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x1,x2 uniform in [0,1] 
The data set for ANN are generated by uniform 

sampling of the domain of definition of the functions. 
The network consists of two input, one hidden layer 

and one output node (Figure 1). The detail of the 
architecture used is summarized in Table 1. The 
architecture was identified by exploratory experiments 
where the size of the hidden layer was varied from 5 to 30 
(that is, the number of nodes in the hidden layer were 
varied from 5 to 30 in steps of 5) and the architecture that 
give the minimum error on training was used. All the 
hidden nodes use tangent hyperbolic activation function 
while the output nodes are linear.   

 
Table 1: Architecture of network used 
Sr. No. Function Inputs Hidden 

nodes 
Output 
nodes 

No. of 
weight 

1. Fn1 2 15 1 61 
2. Fn2 2 10 1 41 

 
The resilient propagation (RPROP) [22] algorithm as 

implemented in MATLAB 7.2 Neural Network toolbox is 
used with the default learning rate and momentum 
constant. For training the network 200 random samples 
were generated from the input domain of the functions for 
training purposes. 5000 epochs of training was conducted 
for each problem. 30 nos. of networks has been trained 
with the above procedure.  

Table 2 provides the summary statistics for the 
network chosen. From the value obtained we may infer 
that these networks do not show very good fault tolerance 
behavior for the WSZ. Though, some of the weights do 
not affect the network computation, as under these fault, 
both MSE and MAPE values for some of the weights is 
zero. This corresponds to weights that are not utilized in 
computation and can be easily pruned.  
 
Table 2: Weight Stuck at zero summary data 
 MINMAX MINMEAN 
Fault  
(Metric)  

Fn1 (18) Fn2 (11) Fn1 (30) Fn2 (21) 

MSE 
MIN 0 0 0.000335007 0 

MAX 0.461826 4.17175 0.598987 5.59626 
MEAN 0.0984594 0.843973 0.096724 0.653498 

MEDIAN 0.049704 0.350913 0.0693296 0.321483 
STD 0.11113 1.15733 0.115438 1.02684 

(MAPE) 
MIN 0 0 0.176943 0 

MAX 62.0969 162.796 66.3062 198.611 
MEAN 20.3705 45.7728 19.9859 40.9889 
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MEDIAN 16.688 38.4144 14.7482 28.8604 
STD 17.0994 48.7023 16.5305 45.0479 

 
 Figures 2 and 3 represents the behavior of all 30 

networks for the average MSE and maximum MSE for 
(any) single WSZ fault for Fn1 and Fn2 respectively. 
From the figures, we may infer that, the value of the error 
metric is not the same for each of the 30 networks. That 
is, since the networks initially differ only in the choice of 
initial weights, thus we may conclude that initial weight 

choice has an important role to play in the fault tolerance 
behavior of FFANNs and needs to be further investigated. 

We choose the network (out to 30), with the 
minimum maximum MSE (MINMAX) and minimum 
mean MSE (MINMEAN), for further analysis for each of 
the two tasks; that is, see network with the best fault 
tolerance behavior is chosen for further analysis. 

 
 
 

Figure 2: Behavior of 30 networks for Fn1.  Figure 3: Behavior of 30 networks for Fn2. 

 

Figure 4: Weight distribution (MINMAX) for network 18 
corresponding to Fn1.  

Figure 5: Weight distribution (MINMAX) for network 11 
corresponding to  Fn2.   
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Figure 6: Weight distribution (MINMAX) for network 30 
corresponding to  Fn1. 

Figure 7: Weight distribution (MINMAX) for network 21 
corresponding to  Fn2. 

 
Figure 8: Weight distribution (MINMEAN) for network 18 
corresponding to  Fn1. 

Figure 9: Weight distribution (MINMEAN) for network 11 
corresponding to  Fn2.   

Figure 10: : Weight distribution (MINMEAN) for network 30 
corresponding to  Fn1. 

Figure 11: Weight distribution (MINMEAN) for network 21 
corresponding to  Fn2.   

 
From figure 4-7, we see that faults in some weights is 

tolerated (that is, the induced error under fault is small), but 
the figures also show that faults in some weights are critical 
(that is, the faults in these weights lead to large 
computational error in the network output), for the 
MINMAX metric, a similar behavior is seen in figure 8-11 
for the MINMEAN metric. 

From the results obtained in Table 2, it is apparent that 
these networks trained using the RPROP[22] algorithm can 
not be called fault tolerant to the faults reported.  

VII. CONCLUSIONS 

This paper has presented empirical results on weight 
stuck-at-zero faults for sigmoidal FFANNs. From the 
obtained results we may conclude:  

1. Some weights are redundant and can be pruned 
(fault in these lead to no change in network 
output). 

2. Partial fault tolerance is present in these networks 
(as faults in some weights lead to small change in 
output of these networks). 

3. Some weights are critical for network computation 
and faults in these are not well tolerated. 

 
 In our opinion, the next step in the analysis of these 
networks is to device a mechanism that distributes the 
computational importance of the critical weights through 
realignment of weight or by addition of new nodes (hidden) 
and corresponding weights. Moreover, the effect of initial 
weights on the fault tolerance behavior of FFANN to weight 
stuck at zero faults needs to be further investigated. 
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